← Retour

Gaston Darboux: Biographie, Bibliographie analytique des écrits

16px
100%

SECTION IV.
MÉCANIQUE ANALYTIQUE, MÉCANIQUE CÉLESTE
ET
PHYSIQUE MATHÉMATIQUE.

Extrait de l'Analyse due a PHILIPPE GILBERT des Notes insérées par M. GASTON DARBOUX dans le «Cours de Mécanique par M. DESPEYROUS».

Ce qui donne au Cours de Mécanique de Despeyrous une valeur et un intérêt particuliers, ce sont les nombreuses Notes qu'y a jointes M. G. Darboux, en les extrayant de ses propres travaux parus dans les Mémoires de la Société des Sciences de Bordeaux, le Bulletin des Sciences mathématiques, etc. Arrêtons-nous un instant sur ces Notes, aussi remarquables par la forme que par le fond.

Le but de la Note I est d'examiner à fond les démonstrations purement statiques du parallélogramme des forces (Daniel Bernoulli, D'Alembert, Cauchy, etc.), d'indiquer les postulats qu'il est nécessaire d'introduire pour rester rigoureux et ne rien emprunter à la théorie du mouvement. L'Auteur discute avec beaucoup de finesse et de rigueur tous les points, et prouve que les postulats nécessaires et suffisants peuvent se réduire à quatre: 1º la résultante de plusieurs forces appliquées à un même point doit être unique et déterminée, indépendante de l'ordre dans lequel on les compose; 2º indépendante de l'orientation du système des forces dans l'espace; 3º la loi de la composition des forces doit se réduire à l'addition algébrique dans le cas de forces de même direction; 4º une certaine fonction φ(P) doit être continue (ou être toujours positive)....

La Note VII contient la solution complète de ce joli problème: Trouver la figure d'équilibre d'un fil flexible parcouru par un courant, sous l'action d'un pôle d'aimant. La tension du fil est constante; la figure d'équilibre est une ligne géodésique d'un cône de révolution qui a son sommet au pôle. M. Darboux donne le moyen de construire ce cône, connaissant la longueur du fil et ses extrémités.

La Note VIII constitue un beau Mémoire sur le mouvement d'une figure plane dans son plan. Il y est montré que l'aire décrite par le rayon vecteur d'un point de la figure mobile, quand celle-ci passe d'une position à une autre, est égale à la moitié de la rotation de la figure multipliée par la puissance de ce point par rapport à un cercle déterminé de la figure mobile. Dans les mouvements fermés, le centre de ce cercle est au centre de gravité des courbures (Steiner) de la roulette mobile. Si l'on prend trois points en ligne droite, on trouve des relations élégantes comprenant le théorème de Holditch. De même, en étudiant par l'analyse les enveloppes des droites de la figure, on retrouve le théorème bien connu et celui-ci: L'arc enveloppé par une droite quelconque, entre deux positions, a pour mesure l'angle de rotation multiplié par la distance de la droite à un point fixe de la figure mobile. Ce Mémoire a paru (plus complet) dans le Bulletin de 1878, à la suite d'une très intéressante Communication de M. Liguine sur les aires des roulettes.

Dans la Note IX, M. Darboux décrit un nouveau système articulé à cinq tiges, de M. Hart, propre à décrire une ligne droite et se transformant, dans certaines conditions, en un compas à ellipses. Il donne la théorie de cet appareil et l'extension à un système plus compliqué. On consultera sur ce sujet un autre travail de M. Darboux, publié dans le tome III, 2e série, du Bulletin, et les très instructives Conférences de M. J. Neuberg (Liége, 1886)....

Dans la Note XII, l'Auteur traite un problème posé par M. J. Bertrand à propos des lois de Kepler; il démontre géométriquement ce résultat dû à M. Halphen: Quand une force fonction de la position du point lui fait décrire une trajectoire plane quelle que soit la vitesse initiale, cette force passe par un point fixe ou est parallèle à une droite fixe; il résout par l'analyse cette question: Un point sollicité par une force centrale décrit une conique, trouver la loi de la force en fonction de la position. Outre les deux solutions connues

φ = ar  et  φ = a/r^2,

M. Darboux en trouve deux autres dans lesquelles la force dépend de r et de ω, avec l'équation générale correspondante de la trajectoire; il fait voir qu'il n'y a pas d'autres solutions (Comptes rendus, 1877, 1er semestre, pp. 760 et 936)....

La Note XVI est consacrée au développement d'un théorème énoncé par l'Auteur dans son Mémoire sur les théorèmes d'Ivory: Si l'on sait calculer l'attraction d'un ellipsoïde sur un point quelconque pour une loi d'attraction en fonction ψ'(u) de la distance, on saura la calculer pour la loi

Expression 1

k étant une constante quelconque.

La Note XVII est très importante: elle roule sur l'herpolhodie et sur la théorie de Poinsot. La méthode est entièrement analytique. Après avoir établi les équations de la polhodie, M. Darboux en déduit celles de l'herpolhodie en suivant une voie bien plus commode que celle de Poinsot, habituellement adoptée, et qui consiste à établir entre le rayon vecteur et l'arc de la polhodie une relation qui subsiste nécessairement pour l'herpolhodie. Il se sert de cette remarque: Les aires élémentaires du cône fixe et du cône roulant coïncident, et il en est de même de leurs projections sur le plan tangent à l'ellipsoïde central. Or, on obtient facilement les projections de l'aire élémentaire sur les plans principaux de l'ellipsoïde et les angles de ceux-ci avec le plan tangent, ce qui conduit rapidement et sous forme élégante à l'expression de l'aire élémentaire de l'herpolhodie, le pôle étant à la projection du centre de l'ellipsoïde sur le plan tangent. Joignant cette formule à l'expression de la vitesse rotatoire au moyen du rayon vecteur, on trouve deux équations du mouvement du pôle instantané de rotation du corps sur le plan tangent, de la forme

Expression 2      Expression 3

ρ, θ étant les coordonnées polaires de la courbe, F(ρ2) un polynome du 3e degré en ρ2. Il montre que tout système de deux équations semblables représente une herpolhodie, si l'on a la relation n2 = k2 F(0); mais la surface roulante n'est pas nécessairement un ellipsoïde d'inertie.

M. Darboux met encore l'équation différentielle de l'herpolhodie sous d'autres formes, dont l'une, très simple, lui permet de démontrer presque sans calcul que, dans le cas d'un ellipsoïde d'inertie, la courbe ne peut avoir de point d'inflexion. Ce théorème avait été signalé par M. de Sparre et souvent démontré depuis, mais M. Hess, de Munich, l'avait trouvé dès 1880 (Ueber das Rollen einer Fläche vom zweiten Grade, u. s. w.).

Parmi d'autres résultats importants donnés dans ce travail, notons celui-ci: En combinant la représentation du mouvement par le roulement du cône mobile sur le cône fixe de Poinsot, avec une autre représentation qui lui est due aussi, le roulement d'un troisième cône sur le plan tangent invariable, on peut représenter en même temps la loi du temps, et l'on a une image complète du mouvement du corps. M. Sylvester a donné une solution du même problème (Philos. Trans., 1866): M. Darboux s'en occupe; il établit, au sujet des normales de longueur constante menées à l'ellipsoïde le long de la polhodie, un beau théorème de géométrie, qui lui fournit une infinité de manières de réaliser le mouvement de Poinsot par le roulement d'un ellipsoïde, ou même d'une ellipse, sur un plan fixe. Il déduit de là, sans calcul, la loi du mouvement trouvée par Jacobi au moyen des fonctions elliptiques.

La Note XVIII est intitulée Sur la théorie de Poinsot et sur deux mouvements différents correspondant à une même polhodie. Dans ce travail d'un haut intérêt, la question traitée conduit à des résultats géométriques inattendus et, en combinant un théorème de J. de la Gournerie avec le théorème d'Ivory sur les surfaces homofocales, on obtient le beau théorème de M. Greenhill sur l'hyperboloïde articulé.

La Note XIX, qui exige l'étude de la précédente, est aussi très remarquable. M. Darboux montre d'abord que, dans les deux mouvements de Poinsot qui répondent à une même polhodie, le mouvement relatif d'une herpolhodie par rapport à l'autre est le mouvement d'un corps pesant qui aurait une sphère pour ellipsoïde d'inertie relatif au point fixe. Il ramène à ce cas celui d'un solide de révolution quelconque et retrouve ainsi le beau théorème de Jacobi mis au jour par M. Weierstrass (Œuvres de Jacobi, t. II): Le mouvement le plus général d'un solide pesant autour d'un point de son axe de figure est une combinaison de deux mouvements de Poinsot attribués à un système mobile, l'un par rapport à des axes fixes, l'autre par rapport au corps considéré. Il admet cette représentation géométrique remarquable: le roulement d'un cône qui a pour base une herpolhodie sur une sphère ayant son centre sur la verticale du point fixe, et il étudie la courbe sphérique décrite par le pôle instantané....

La Note XXI, intitulée Étude géométrique sur les percussions et le choc des corps, constitue un Mémoire important sur la théorie des percussions, exposée d'une manière bien plus rigoureuse qu'on ne le fait d'habitude: ce Mémoire renferme plusieurs belles propriétés générales relatives au choc de deux systèmes matériels.

La Note XXII a pour titre: Sur les rapports de la théorie des moments d'inertie avec celle des surfaces homofocales. On connaît, là-dessus, un célèbre théorème de Binet qui donne les axes principaux d'inertie relatifs à un point quelconque de l'espace. En introduisant deux autres espèces de moments d'inertie (relatifs à un point et à un plan), M. Darboux démontre une série de beaux théorèmes concernant les moments d'inertie, les surfaces homofocales, etc.

  • Ms, t. 7, juil. 1887, p. 157-160.

MÉMOIRES. NOTES.

Mécanique analytique.

1. Sur le centre de gravité de certains volumes.

  • C M D, t. I, n. III, 1884, p. 383-388.

2. 3. Sur le choc des corps.

  • C R, t. 78, 18 mai 1874, p. 1421-1425.
  • C R, t. 78, 1er juin 1874, p. 1559-1562.

4. Sur le frottement dans le choc des corps.

  • C R, t. 78, 8, 22 juin 1874, p. 1645-1649, 1767.

5. Étude géométrique sur les percussions et le choc des corps.

  • B S M, 2e s., t. 4, 1re p., avr. 1880, p. 126-160.—C M D, t. II, n. XXI, 1886, p. 547-581.
  • Analyse par G. Kœnigs: B S M, 2e s., t. 10, 1re p., janv. 1886, p. 12.

6. Sur le tautochronisme quand on a égard au frottement.

  • B S M, 2e s., t. 3, 1re p., nov. 1879, p. 484-488.—C M D, t. I, n. XIII, 1884, p. 441-446.

7. Recherche de la loi que doit suivre une force centrale pour que la trajectoire qu'elle détermine soit toujours une conique.

  • C R, t. 84, 16, 30 avr. 1877, p. 760-762, 936-938.

8. Problème de Mécanique.

M. G. Darboux résout le problème suivant: Trouver la figure d'équilibre d'un fil flexible inextensible non pesant, traversé par un courant et soumis à l'influence d'un pôle d'aimant.

  • B S M, 2e s., t. 2, 1re p., oct. 1878, p. 433-436.—C M D, t. I, n. VII, 1884, p. 399-401.

9. Sur la brachystochrone relative à un point matériel pesant.

  • C M D, t. I, n. X, 1884, p. 424-426.

10. Étude d'une question relative au mouvement d'un point sur une surface de révolution.

  • B S M F, t. 5, 1876-1877, 21 mars 1877, p. 100-113.
  • Analyse par Ohrtmann: J F M, Bd. 9, J. 1877, S. 648-650.

11. Sur le mouvement d'une figure invariable; propriétés relatives aux aires, aux arcs des courbes décrites et aux volumes des surfaces trajectoires.

  • B S M, 2e s., t. 2, 1re p., août 1878, 333-356.
  • Analyse par Schumann: J F M, Bd. 10, J. 1878, S. 562-570.

12. Sur le déplacement d'une figure invariable.

Pour le mouvement d'une figure dans l'espace, on possède, en Géométrie, des propositions générales applicables à tout déplacement, mais on connaît peu de mouvements particuliers. Le plus simple des mouvements dans lesquels tous les points de la figure mobile décrivent des courbes unicursales de degré donné, en laissant de côté la translation, est celui dans lequel tous les points de la figure mobile décrivent des coniques. C'est ce mouvement que M. G. Darboux étudie dans cette Note.

  • C R, t. 92, 17 janv. 1881, p. 118-121.—A S E N, 3e s., t. 7, oct. 1890, p. 323-326.
  • Analyse par Schumann: J F M, Bd. 13, J. 1881, S. 666-667;—Bd. 22, J. 1890, S. 862-863.

13. Sur le mouvement d'une figure invariable.

  • C M D, t. I, n. VIII, 1884, p. 402-416.

14. 15. Sur la théorie de Poinsot et sur deux mouvements correspondant à la même polhodie.

  • C R, t. 100, 29 juin 1885, p. 1555-1561.
  • C M D, t. II, n. XVIII, 1886, p. 511-526.
  • Analyse par Schumann: J F M, Bd. 17, J. 1885, S. 844-846.
  • Analyse par G. Kœnigs: B S M, 2e s., t. 10, 1re p., janv. 1886, p. 10-11.

16. Remarque au sujet d'une Note de M. J.-N. Franke,

Intitulée Sur la courbure de l'herpolhodie.

  • C R, t. 100, 29 juin 1885, p. 1576-1577.

17. Sur l'herpolhodie et sur quelques propositions relatives à la théorie de Poinsot.

  • C M D, t. II, n. XVII, 1886, p. 488-510.
  • Analyse par G. Kœnigs: B S M, 2e s., t. 10, 1re p., janv. 1886, p. 9-10.

18 à 20. Sur le mouvement d'un corps pesant de révolution, fixé par un point de son axe.

Jacobi a énoncé et démontré un théorème d'après lequel le mouvement de rotation d'un corps pesant de révolution, fixé par un point de son axe, peut se ramener à une combinaison des mouvements de rotation de deux solides différents sur lesquels n'agirait aucune force accélératrice. M. G. Darboux, en donnant une démonstration directe et élémentaire de ce théorème, a été conduit à des propositions nouvelles relatives à la représentation cinématique du mouvement.

  • C R, t. 101, 6, 13 juil. 1885, p. 11-17, 115-119.
  • J L, 4e s., t. 1, f. 4, 1885, p. 403-430.
  • C M D, t. II, n. XIX, XX, 1886, p. 527-544, 545-546.
  • Analyse par Lampe: J F M, Bd. 17, J. 1885, S. 890-892.
  • Analyse par G. Kœnigs: B S M, 2e s., t. 10, 1re p., janv. 1886, p. 11-12.

21. Sur diverses propositions relatives au mouvement d'un corps solide autour d'un point fixe.

  • C R, t. 101, 20 juil. 1885, p. 199-205.

22. Sur une question relative au mouvement d'un point sur une surface de révolution.

  • C M D, t. II, n. XV, 1886, p. 467-482.
  • Analyse par G. Kœnigs: B S M, 2e s., t. 10, 1re p., janv. 1886, p. 8-9.

23. Sur les formules d'Euler et sur le déplacement d'un solide invariable.

  • L T S D, IVe P., n. V, 1896, p. 433-441.

24. Sur la sphère de rayon nul et sur la théorie du déplacement d'une figure invariable.

Cette Note est le résumé de Leçons professées par M. G. Darboux à la Sorbonne en 1900 et en 1904.

  • B S M, 2e s., t. 29, 1re p., fév. 1905, p. 34-55.

25. Sur les rapports de la théorie des moments d'inertie avec celle des surfaces homofocales.

  • C M D, t. II, n. XXII, 1886, p. 582-606.
  • Analyse par G. Kœnigs: B S M, 2e s., t. 10, 1re p., janv. 1886, p. 12-13.

26. Sur un problème de Mécanique.

En 1857, Joseph Bertrand remarque que si l'on connaît une intégrale d'un problème de Mécanique pour lequel on sait seulement que les forces dépendent uniquement des coordonnées de leurs points d'application, et nullement des vitesses de ces points, on peut trouver quel est le problème et déterminer les composantes de la force qui sollicite chaque point...

Dans le cas où l'intégrale supposée connue est entière et du second degré par rapport aux vitesses, J. Bertrand n'a fait qu'ébaucher la solution et l'a ramenée à dépendre d'une équation linéaire aux dérivées partielles dont il n'a pas donné l'intégrale générale. C'est sur ce point particulier de ses recherches que je veux revenir aujourd'hui.  G. D.

  • A N S E N, s. 2, t. 6, 1901, 22 sept. 1901, p. 371-376.
  • Analyse par Lampe: J F M, Bd. 32, J. 1901, S. 725-726.

Ce Mémoire fait partie du Livre Jubilaire offert à la Société Hollandaise des Sciences à Harlem par les amis de J. Bosscha, à l'occasion de son soixante-dixième anniversaire, le 18 novembre 1901: La Haye, 1901, gr. in-8o.

27. Remarque sur une Note de M. E. Goursat,

Intitulée Sur les transformations isogonales en Mécanique.

  • C R, t. 108, 4 mars 1889, p. 449-450.

28. Sur la solution particulière que peut admettre le problème du mouvement d'un corps attiré vers deux centres fixes par des forces réciproquement proportionnelles aux carrés des distances.

  • Œuvres de Lagrange, t. XII, n. III, 1889, p. 349-352.

29. Sur les oscillations infiniment petites d'un système de corps.

M. G. Darboux, en suivant une méthode, due à M. Kronecker, de réduction des formes quadratiques, montre qu'une certaine équation algébrique, établie par Lagrange, admet, contrairement aux affirmations de ce géomètre, des racines égales.

  • Œuvres de Lagrange, t. XI, n. VIII, 1888, p. 492-497.

Mécanique céleste.

1. 2. Sur des transcendantes qui jouent un rôle important dans la théorie des perturbations planétaires.

  • C R, t. 90, 14 juin 1880, p. 1416-1419.
  • C R, t. 90, 21 juin 1880, p. 1472-1474.
  • Analyse par F. Müller: J F M, Bd. 12., J. 1880, S. 394-395.

3. Sur les lois de Kepler.

  • C M D, t. I, n. XII, 1884, p. 432-440.

4. Sur une loi particulière de la force signalée par Jacobi.

Dans la théorie des forces centrales, on s'occupe surtout du cas où la force dépend seulement de la distance du point mobile au centre attirant. L'illustre Jacobi a signalé une loi plus compliquée de la force, qui est donnée par la formule R = _f_(ω)/_r^2_, r désignant la distance au pôle et ω l'angle polaire.  G. D.

  • C M D, t. I, n. XI, 1884, p. 427-431.

5. Sur un problème relatif à la théorie des forces centrales.

  • C M D, t. II, n. XIV, 1886, p. 461-466.
  • Analyse par G. Kœnigs: B S M, 2e s., t. 10, 1re p., janv. 1886, p. 8.

6. Sur une extension du théorème d'Ivory relatif à l'attraction des ellipsoïdes.

  • C M D, t. II, n. XVI, 1886, p. 483-487.
  • Analyse par G. Kœnigs: B S M, 2e s., t. 10, 1re p., janv. 1886, p. 9.

7. Sur les trois intégrales de Laplace.

M. G. Darboux montre que, d'une propriété, qu'il rappelle, de l'hodographe, dérivent immédiatement les trois intégrales de Laplace pour la solution du problème des trois corps.

  • B A, t. 5, mars 1888, p. 89-91.

Physique mathématique.

1. Sur une nouvelle définition de la surface des ondes.

D'un théorème, dû à M. Niven, relatif à la surface des ondes, M. G. Darboux a déduit, pour cette surface, une définition simple et nouvelle, dont le caractère essentiel est de n'exiger l'emploi d'aucun ellipsoïde. Il montre que la surface des ondes est une simple variété d'une surface du quatrième ordre n'ayant aucun point singulier et contenant 16 coniques isolées.

  • C R, t. 92, 28 fév. 1881, p. 446-448.
  • Analyse par Schumann: J F M, Bd. 13., J. 1881, S. 509-510.

2. Sur les lignes asymptotiques de la surface des ondes.

  • C R, t. 96, 12 nov. 1883, p. 1039-1042.

3. Sur les lignes de courbure de la surface des ondes.

  • C R, t. 96, 19 nov. 1883, p. 1133-1135.
  • Analyse par August des Notes nos 2 et 3: J F M, Bd. 15, J. 1883, S. 709-713.

4. Sur la surface des ondes.

Ce Mémoire contient, avec quelques compléments, les Notes nos 2 et 3.

  • A S E N, 3e s., t. 6, déc. 1889, p. 379-388.
  • Analyse par August: J F M, Bd. 21, J. 1889, S. 800-801.

5. Sur les lignes asymptotiques et sur les lignes de courbure de la surface des ondes de Fresnel.

  • L T S D, IVe P., n. VIII, 1896, p. 466-488.
  • Analyse par G. Kœnigs: B S M, 2e s., t. 22, 1re p., juin 1898, p. 157.

6. Sur l'application des méthodes de la Physique mathématique à l'étude des corps terminés par des cyclides.

  • C R, t. 83, 27 nov. 1876, p. 1037-1040.
  • C R, t. 83, 4 déc. 1876, p. 1099-1102.

7. Sur des Mémoires de Poisson relatifs à la distribution de l'électricité.

  • B S M, 2e s., t. 31, janv. 1907, p. 17-28.

SECTION V.
MATHÉMATIQUES SUPÉRIEURES.

OUVRAGE.

1. Mémoire sur l'Équilibre astatique et sur l'effet que peuvent produire des forces de grandeurs et de directions constantes appliquées en des points déterminés d'un corps solide, quand ce corps change de position dans l'espace.

Il était naturel de chercher à étendre aux systèmes composés de forces quelconques les propriétés du centre des forces parallèles, c'est-à-dire d'examiner comment varie l'effet d'un système quelconque de forces appliquées en des points déterminés du corps solide, soit lorsque, leur grandeur et leur direction demeurant les mêmes, l'orientation du corps vient à changer, soit, ce qui est la même chose, lorsque, le corps demeurant en repos, les forces changent de direction de manière à conserver entre elles les mêmes angles. On peut demander, par exemple, quelles sont les conditions nécessaires pour qu'elles se fassent équilibre dans toutes les positions du corps: nous dirons alors que le corps est en équilibre astatique...

Le travail actuel contient la démonstration des propositions déjà connues dans cet ordre de recherches et celle de plusieurs propriétés qui me paraissent entièrement nouvelles.  G. D.

  • Paris, G.-V., 1877, gr. in-8, IV-68 p.
  • M S S B, 2e s., t. 2, 1878, 21 déc. 1876, p. 1-65.
  • Analyse par Ohrtmann: J F M, Bd. 9, J. 1877, S. 615-617.
  • Analyse: B S M, 2e s., t. 2, 1re p., juil. 1878, p. 278-281.

MÉMOIRES. NOTES.

Algèbre.

1. Note relative à un Mémoire de Fourier,

Intitulé Solution d'une question particulière du calcul des inégalités.

  • Œuvres de Fourier, t. II, Paris, G.-V., 1890, in-4, p. 320-321.

2. Sur un théorème relatif à la continuité des fonctions.

  • B S M, t. 3, oct. 1872, p. 307-313.

3. Mémoire sur le théorème de Sturm.

Au lieu d'exposer à part les deux démonstrations connues du théorème de Sturm, celle de l'inventeur et celle de M. Hermite, et d'établir ensuite le lien entre ces deux démonstrations au moyen de l'expression des fonctions de Sturm, due à M. Sylvester, M. G. Darboux développe la théorie tout entière, en employant uniquement la méthode de M. Hermite; il a été ainsi conduit à plusieurs formules nouvelles.

  • B S M, t. 8, janv., fév. 1875, p. 56-63, 92-112.

4. Sur une question de priorité.

Dans une Lettre à M. Resal, M. G. Darboux fait remarquer qu'une formule attribuée à M. Laurent par M. Heine est une simple application d'une formule qu'il a donnée au début de son Mémoire no 3.

  • J L, 3e s., v. 2, juil. 1876, p. 240.

5. Sur une méthode d'Abel pour déterminer la racine commune à deux équations algébriques.

  • N A M, 2e s., t. 4, mars 1865, p. 109-111.

6. Sur la théorie de l'élimination entre deux équations à deux inconnues.

  • B S M, t. 10, janv. 1876, p. 56-64.

7. Sur l'élimination entre deux équations algébriques à une inconnue.

  • B S M, 2e s., t. 1, 1re p., fév. 1877, p. 54-64.

8. Note relative à un Mémoire de Fourier,

Intitulé Sur l'usage du théorème de Descartes dans la recherche des limites des racines.

M. G. Darboux restitue à Fourier la découverte d'un théorème attribuée à Budan par Arago.

  • Œuvres de Fourier, t. II, Paris, G.-V., 1890, in-4, p. 310-314.

9. Sur la méthode d'approximation de Newton.

  • N A M, 2e s., t. 8, janv. 1869, p. 17-21.

Géométrie synthétique.

1. Sur un mode de transformation des figures et son application à la construction de la surface du deuxième ordre déterminée par neuf points.

  • I, 36e a., no 1799, 24 juin 1868, p. 204-205, 205-206.—B S P, 6e s., 25 avr., 16 mai 1868, p. 72-76, 77-80.—A S E N, t. 6, 1869, p. 61-68.
  • Analyse par Michel Chasles: R P G C, 1870, p. 364-365.

2. Sur les modes de transformation qui conservent les lignes de courbure.

  • C R, t. 92, 7 fév. 1881, p. 286-289.

3. Sur les polygones inscrits et circonscrits à l'ellipsoïde.

  • B S P, 2e s., t. 7, 23 avr. 1870, p. 92-95.

4. Sur les polygones inscrits à une conique et circonscrits à une autre conique.

  • C R, t. 90, 12 janv. 1880, p. 85-87.
  • Analyse: B S M, 2e s., t. 4, 2e p., avr. 1880, p. 90-91.

5. Sur une classe de courbes unicursales.

Laguerre a donné, en 1882, d'intéressantes propriétés de certaines courbes de quatrième classe, qu'il nomme hypercycles. En janvier 1880, M. G. Darboux, dans son Cours à la Sorbonne, a énoncé, relativement à des courbes unicursales de toutes les classes, des propositions qui ont les rapports les plus étroits avec celles qu'a données Laguerre: il développe ces propositions dans cette Note.

  • C R, t. 94, 3 avr. 1882, p. 930-933.
  • Analyse par Dyck: J F M, Bd. 14, J. 1882, S. 542-543.

6. Sur une propriété du cercle.

A diverses courbes unicursales de classe quelconque, M. G. Darboux étend cette propriété du cercle: Le périmètre du triangle formé par deux tangentes fixes à un cercle et une tangente variable est constant.

  • C R, t. 94, 17 avr. 1882, p. 1108-1110.
  • Reproduction des Notes nos 5 et 6: A S E N, 3e s., t. 7, oct. 1890, p. 327-334.
  • Analyse par Wallenberg: J F M, Bd. 22, J. 1890, S. 716.

7. Sur les systèmes linéaires de coniques et de surfaces du second ordre.

Cette Note ne contient que des énoncés; mais elle embrasse toute cette théorie qui, depuis, a pris un si grand développement.

  • B S M, t. 1, nov. 1870, p. 348-358.

8. Sur les caractéristiques des systèmes de coniques et de surfaces du second ordre.

  • C R, t. 67, 28 déc. 1868, p. 1333-1334.

9. Mémoire sur une classe de courbes et de surfaces.

  • C R, t. 68, 7 juin 1869, p. 1311-1313.

10. Sur une surface du cinquième ordre et sa représentation sur le plan.

  • B S M, t. 2, fév. 1871, p. 40-64.

11. Sur la représentation des surfaces algébriques.

  • B S M, t. 2, mai 1871, p. 155-158.

12. Sur les lignes asymptotiques de la surface de Steiner.

  • I, n. s., 1er a., no 18, 30 avr. 1873, p. 142-143.—B S P, 6e s., 12 avr. 1873, p. 37.
  • Analyse par August: J F M, Bd. 5, J. 1873, S. 323.

13. Sur la surface à seize points singuliers et les fonctions Θ à deux variables.

  • C R, t. 92, 21 mars 1881, p. 685-688.

14. Sur la surface à seize points singuliers.

  • C R, t. 92, 27 juin 1881, p. 1493-1495.
  • Analyse par August des Notes nos 13 et 14: J F M, Bd. 13, J. 1881, S. 629-630.

15. 16. Sur les relations entre les groupes de points, de cercles et de sphères dans le plan et dans l'espace.

La théorie des tétraèdres et des distances mutuelles des points dans le plan et dans l'espace doit, à un grand nombre de géomètres, des formules élégantes établissant des relations entre les aires, les volumes, les distances se rapportant aux groupes considérés.... Je me suis aperçu qu'il pouvait y avoir, dans bien des cas, avantage à considérer ces formules, en les rattachant à certaines formes homogènes qui se présentent naturellement dans cette théorie.  G. D.

  • I, 40e a., no 1952, 27 mars 1872, p. 100-101.—B S P, 6e s., 9 mars 1872, p. 69-72.
  • A S E N, 2e s., t. 1, 15 mars 1872, p. 323-392. Analyse par Brill: J F M, Bd. 4, J. 1872, S. 383-386.

Géométrie analytique.

1. Sur un problème de Géométrie analytique.

Dans une Lettre à M. Brisse, M. G. Darboux donne l'énoncé et la solution d'un problème relatif à des coniques variables passant par quatre points d'une conique fixe.

  • N A M, 2e s., t. 19, avr. 1880, p. 184-188.

2. Sur les polygones circonscriptibles à un cercle.

  • B S M, 2e s., t. 3, 1e p., fév. 1879, p. 64-72.

3. De l'emploi des fonctions elliptiques dans la théorie du quadrilatère plan.

  • B S M, 2e s., t. 3, 1re p., mars 1879, p. 109-128.

4. Sur un Mémoire de M. Dini.

M. G. Darboux étend à l'espace un théorème de M. Dini, relatif aux figures homographiques dans le plan.

  • B S M, t. 1, déc. 1870, p. 383-384.

5. Sur le théorème fondamental de la Géométrie projective.

Extrait d'une Lettre adressée à M. F. Klein par M. G. Darboux.

  • M A, Bd. 17, 1880, S. 55-61.

6. Remarques sur une Note de Mlle L. Bortniker,

Intitulée Sur un genre particulier de transformations homographiques.

  • C R, t. 104, 14 mars 1887, p. 773-777.

7. Sur les sections du tore.

  • N A M, 2e s., t. 3, avr. 1864, p. 156-165.

8. Théorèmes sur l'intersection d'une sphère et d'une surface du second degré.

  • N A M, 2e s., t. 3, mai 1864, p. 199-202.

9. Sur les propriétés métriques des surfaces du second degré.

Il existe trois séries de petits cercles doublement tangents à une conique sphérique, les cercles d'une même série ayant leurs centres sur le même axe de la conique. M. G. Darboux énonce et démontre 14 théorèmes relatifs à ces cercles et les étend aux quadriques.

  • B S M F, t. 2, 1873-1874, 1er juil. 1874, p. 144-153.

10. Sur une classe particulière de surfaces réglées.

  • B S M, t. 2, oct. 1871, p. 301-314.

11 à 28. Notes dans l'Ouvrage intitulé «Application de l'Algèbre à la Géométrie par M. Bourdon»:

  Pages.
I. Sur le théorème des projections et la transformation des coordonnées. 499-510
II. Sur le centre des distances proportionnelles. 511-518
III. Sur la distance d'un point à une droite et sur la surface du triangle déterminé par trois points. 519-524
IV. Sur la discussion de l'équation générale du second degré. 525-532
V. Sur l'interprétation des inégalités en Géométrie analytique. 533-537
VI. Sur les lieux géométriques. 538-550
VII. Sur les déterminants et leur application en Géométrie analytique. 551-558
VIII. Sur la réduction de l'équation du second degré à sa forme la plus simple par le changement des coordonnées. 559-566
IX. Sur les théorèmes relatifs aux diamètres conjugués dans l'ellipse. 567-572
X. Sur la théorie des tangentes. 573-585
XI. Sur l'intersection de deux courbes du second degré. 586-593
XII. Sur l'équation qui détermine les couples de sécantes communes à deux courbes du second degré. 594-603
XIII. Sur la détermination des courbes du degré m passant par un nombre donné de points. 604-608
XIV. Du plan tangent dans les surfaces algébriques. 609-616
XV. Du plan polaire dans les surfaces du second degré. 617-623
XVI. Du centre et des plans diamétraux. 624-629
XVII. Des plans principaux dans les surfaces du second degré. 630-638
XVIII. De la réduction de l'équation du second degré à sa forme la plus simple par le changement des coordonnées. 639-648
  • Paris, G.-V., 9e éd., 1880, 1906, in-8.

Mécanique.

1. Sur la composition des forces en Statique.

Dans cette Note, qui se rapporte à une question souvent étudiée, M. G. Darboux se propose de faire l'analyse des postulats qui sont nécessaires dans la démonstration du théorème fondamental de la Statique.

  • B S M, t. 9, déc. 1875, p. 281-288.—C M D, t. I, n. I, 1884, p. 371-377.

2. Étude sur la réduction d'un système de forces, de grandeurs et de directions constantes, agissant en des points déterminés d'un corps solide, quand ce corps change de direction dans l'espace.

  • C R, t. 83, 27 déc. 1876, p. 1284-1286.
  • Analyse par Ohrtmann: J F M, Bd. 8, J. 1876, S. 557-559.

3. Sur le système de quatre forces en équilibre.

  • C M D, t. I, n. IV, 1884, p. 389-390.

4. Note relative à deux théorèmes de Lagrange sur le centre de gravité.

  • B S M F, t. 7, 1878-1879, 31 juil. 1878, p. 1-12.—C M D, t. I, n. II, 1884, p. 378-382.

5. Sur l'équilibre astatique.

  • C M D, t. I, n. V, 1884, p. 391-394.

6. Sur un nouvel appareil à ligne droite de M. Hart.

M. Hart, qui avait déjà trouvé un premier système articulé réalisant, avec cinq tiges seulement, la description mécanique de la ligne droite, a fait connaître une nouvelle solution du même problème, dans laquelle il emploie le même nombre de tiges.... Nous nous proposons d'exposer la méthode de M. Hart, en la généralisant quelque peu et en mettant en évidence quelques conséquences très simples des résultats obtenus par l'auteur.  G. D.

  • B S M, 2e s., t. 3, 1re p., avr. 1879, p. 144-151.—C M D, t. I, n. IX, 1884, p. 417-423.

7. Recherches sur un système articulé.

Ce Mémoire se rapporte à un système de deux quadrilatères articulés que M. Kempe a défini et étudié seulement dans certains cas où la déformation est possible. La solution complète que donne M. G. Darboux permet de rattacher à une théorie générale deux appareils dus à M. Hart, au moyen desquels on peut décrire une ligne droite en n'employant que cinq tiges articulées.

  • B S M, 2e s., t. 3, 1re p., avr. 1879, p. 151-192.

8. Sur deux appareils nouveaux de Mécanique.

En commun avec M. G. Kœnigs.

Le premier de ces appareils, fondé sur un théorème démontré par M. G. Darboux (C M D, Note XVIII), a pour but de décrire le plan dans l'espace au moyen de tiges articulées. Le second fournit une représentation du mouvement d'un corps solide tournant librement autour de son centre de gravité; il est fondé sur l'utilisation simultanée, faite par M. G. Darboux (C M D, Note XVII), des deux modes, indiqués par Poinsot, de représentation de ce mouvement.

  • C R, t. 109, 8 juil. 1889, p. 49-51.

9. Nouvelle démonstration des formules d'Euler et d'Olinde Rodrigues.

  • L C K, n. I, 1897, p. 343-345.
  • Analyse par E. O. Lovett: B A M S, v. 6, 1899-1900, Apr. 1900, p. 303.

10. Sur les mouvements algébriques.

  • L C K, n. II, 1897, p. 352-389.
  • Analyse par E. O. Lovett: B A M S, v. 6, 1899-1900, Apr. 1900, p. 304.

11. Sur les renversements et les inversions planes.

  • L C K, n. III, 1897, p. 346-351.
  • Analyse par E. Cosserat: B S M, 2e s., t. 21, 1re p., juin 1897, p. 162-163.
  • Analyse par E. O. Lovett: B A M S, v. 6, 1899-1900, Apr. 1900, p. 304.

SECTION VI.
HISTOIRE DES SCIENCES.

OUVRAGE.

1. Étude sur le Développement des Méthodes géométriques.

Conférence lue, le 24 septembre 1904, à la Section de Mathématiques appliquées du Congrès international d'Arts et de Science de l'Exposition universelle de Saint Louis.

  • Paris, G.-V., 1905, in-8, 28 p.
  • B S M, s. 2, t. 28, 1re p., sept. 1904, p. 234-263.—Histoire des Mathématiques par W. W. Rouse-Ball, t. II, 1907, Paris, Hn., gr. in-8, p. 231-261.
  • Traduction en anglais: M G G, v. 3, Dec., 1904; March, May, 1905, p. 100-106, 157-161, 169-173.
  • Traduction en anglais par Henry Dallas Thompson: B A M S, v. 11, 1904-1905, July 1905, p. 517-543.
  • Traduction en anglais par George Bruce Halsted: C E St L, v. 1, 1905, p. 535-558.
  • Traduction en japonais par Yoshio Mikami: Tokyobutou ri gakkozasshi, nos 167, 168, 169; oct., nov., déc. 1905; gr. in-8, p. 406-419, 458-467, 9-15.
  • Traduction en italien par Giulio Lazzeri: P M L, Anno 25, Gen.-Feb. 1910.
  • Analyse par Treutlein: J F M, Bd. 35, 1904, p. 61.
  • Analyse: R M M, 13e a., mars 1905, Suppl., p. 4-5.
  • Analyse par G. H. B.: N, v. 72, Aug. 3, 1905, p. 313.
  • Analyse par Paul Mansion: Ms, 3e s., t. 5, sept.-oct. 1905, p. 209-210.
  • Analyse par C. Juel: N T M, Afd. B., 16. aa., 1905, p. 45.
  • Analyse par E. Müller: M M P, 16. J., Apr. 1905, Lit., S. 68-69.
  • Analyse par Z.: N A W, Tweede Reeks, Deel 7, 1905, p. 93.
  • Analyse: C M F, R. 34, 1905, p. 368-369.

ÉLOGES ET NOTICES HISTORIQUES

Lus en séances publiques annuelles de l'Académie des Sciences par M. GASTON DARBOUX, en qualité de Secrétaire perpétuel.

1. Éloge historique de Joseph-Louis-François Bertrand,

Lu le 16 décembre 1901.

  • I F, 35, 1901, p. 19-84.—M A S, t. 47, 2e s., 1904, p. CCCXXI-CCCLXXXVI.
  • Cet Éloge est inséré en tête de l'Ouvrage intitulé Joseph Bertrand, Éloges académiques, n. s.: Paris, H., 1902, in-18 jésus, p. VII-LI.
  • Extrait sous le titre Un enfant prodige: Joseph Bertrand: Ms, 3e s., t. 2, 1902, p. 167-170.

2. Éloge historique de François Perrier,

Lu le 21 décembre 1903.

  • I F, Institut, 1903.-19, in-4, p. 17-76.—M A S, t. 47, 2e s., 1904, p. CDXXXV-CDXLIV.

3. Notice historique sur Charles Hermite,

Lue le 18 décembre 1905.

  • Paris, Institut. 1905.-18, G.-V., in-4, p. 15-68.—M A S, t. 49, 2e s., 1906, p. I-LIV.—R M, 1re a., 10 janv. 1906, p. 37-58.
  • Analyse par Gomes Teixeira: A S A P P, v. 1, no 2, 1905, p. 135.

4. Notice historique sur Antoine d'Abbadie,

Lue le 2 décembre 1907.

Antoine d'Abbadie, explorateur de l'Éthiopie, membre de la section de Géographie et Navigation de l'Académie des Sciences, appartenait par ses origines et sa famille au Pays Basque. Il avait constitué dans le voisinage de Hendaye une belle propriété de plus de 300 hectares, au centre de laquelle il avait fait construire un magnifique château et un Observatoire astronomique. Pour assurer la continuation de son œuvre, il a légué cette propriété à l'Académie en lui imposant la condition de poursuivre les observations astronomiques qu'il avait commencées. M. l'abbé Verschaffel est à la tête de cet Observatoire, qui est placé sous la direction du Secrétaire perpétuel pour les Sciences mathématiques.

  • Paris, Institut. 1907.-20, G.-V., in-4, IV-42 p., 14 pl.—M A S, t. 50, 2e s., 1908, no 2, p. I-XLII, 14 pl.

5. Notice historique sur le Général Meusnier,

Lue le 20 décembre 1909.

  • Paris, Institut., 1909.-33, G.-V., in-4, IV-38 p., 2 pl.—M A S, t. 51, 2e s., 1910, no 2, p. I-XXXVIII, 2 pl.

DISCOURS NÉCROLOGIQUES.

1. A l'Inauguration de la statue de J.-B. Dumas,

A Alais, le lundi 21 octobre 1889, Discours prononcé par M. G. Darboux, au nom de la Faculté des Sciences.

  • I F, 1889, p. 63-65.

2. Aux Funérailles de Hébert,

A Paris, le mardi 8 avril 1890, Discours prononcé par M. G. Darboux, au nom de la Faculté des Sciences.

  • I F, 1890, p. 7-11.—Edmond Hébert, Paris, gr. in-8, p. 11-17.

3. Aux Funérailles de Ossian Bonnet,

A Paris, le vendredi 24 juin 1892, Discours prononcé par M. G. Darboux, au nom de la Faculté des Sciences.

  • I F, 1892, p. 5-7.

4. A l'Inauguration de la statue du Général Perrier,

A Valleraugue (Gard), le dimanche 28 août 1892, Discours prononcé par M. G. Darboux, au nom de l'Académie des Sciences.

  • I F, 1892, p. 3-12.

5. Aux Funérailles de Joseph Bertrand,

A Paris, le vendredi 6 avril 1900, Discours prononcé par M. G. Darboux, au nom de la Société de secours des Amis des Sciences.

  • I F, Institut, 1900.-9, in-4, p. 29-32.

6. Sur Émile Fernet,

Allocution prononcée par M. G. Darboux, Secrétaire perpétuel.

  • C R, t. 140, 27 fév. 1905, p. 553.

7. Sur Marcelin Berthelot,

Allocution prononcée par M. G. Darboux, Secrétaire perpétuel.

  • C R, t. 143, 25 mars 1907, p. 668.

8. Sur A. de Lapparent,

Allocution prononcée par M. G. Darboux, Secrétaire perpétuel.

  • C R, t. 146, 11 mai 1908, p. 952.

9. Aux Funérailles de Henri Becquerel,

A Paris, le 29 août 1908, Discours prononcé par M. G. Darboux, au nom de l'Académie des Sciences.

  • C R, t. 147, 31 août 1908, p. 443-445.

DISCOURS.

1. A la Cérémonie de l'Hommage à M. de Lacaze-Duthiers,

A Paris, le 1er juillet 1909, Discours prononcé par M. G. Darboux, en qualité de Doyen de la Faculté des Sciences.

  • R R, 4e s., t. 14, 7 juil. 1900, p. 2.

2. A la XVIe Conférence «Scientia»,

A Paris, le 28 juin 1900, Discours prononcé par M. G. Darboux, Président de cette réunion, à laquelle «beaucoup de savants, élèves et admirateurs, amis ou collègues de M. Darboux, avaient tenu à assister».

  • R R, 4e s., t. 14, 7 juil. 1900, p. 17-19.

3. A la première Assemblée générale de l'Association Internationale des Académies,

A Paris, du 16 au 20 avril 1901, Discours prononcé par M. G. Darboux, en qualité de Président de cette Assemblée.

  • A A I A, Pièce no 3, Paris, G.-V., 1901, p. 17-19.—R R, 4e s., t. 15, 27 avr. 1901, p. 532-533.

4. A l'Ouverture du Congrès international d'Arts et de Science,

A Saint Louis, le 19 septembre 1904, Allocution de M. G. Darboux, en qualité de Représentant de la France au Congrès.

  • C E St L, v. I, 1905, p. 28-29.

5. Au Banquet officiel du Congrès international d'Arts et de Science,

A Saint Louis, le 23 septembre 1904, Discours prononcé par M. G. Darboux, en qualité de Représentant de la France au Congrès.

  • C E St L, v. I, 1905, p. 36-38.

6. A la Séance générale du Congrès des Sociétés Savantes,

A Montpellier, le 6 avril 1907, Discours prononcé par M. G. Darboux, en qualité de Président du Congrès.

  • Journal Officiel de la République Française, 39e a., no 96, 9 avr. 1907, Paris, in-4, p. 2758-2759.—Paris, I. N., 1907, in-4.

7. Au troisième centenaire de l'exploration de la rivière Hudson et au premier centenaire du lancement du Clermont par Robert Fulton,

Adresse de M. G. Darboux, Délégué de la République Française, au Gouverneur de l'État de New York, au Maire de la Ville de New York et aux Membres de la Commission Hudson-Fulton, lue le 27 septembre 1909.

  • Plaquette in-4 de 12 p.—Le Temps, 49e a., no 17633, 7 oct. 1909, in-fol., p. 3.—R I E, v. 58, 15 nov. 1909, p. 414-418.

CONFÉRENCE.

1. Les origines, les méthodes et les problèmes de la Géométrie infinitésimale.

Conférence lue à Rome au palais Corsini, le 7 avril 1908, devant le IVe Congrès des Mathématiciens.

  • B S M, 2e s., t. 32, 1re p., avr. 1908, p. 106-128.—R O, t. 19, 15 nov. 1908, p. 846-855.

NOTICES NÉCROLOGIQUES.

1. Sur Jules Hoüel.

  • B S M, 2e s., t. 10, 1re p., juil. 1886, p. 145.

2. Sur Marius Sophus Lie.

  • C R, t. 128, 27 fév. 1899, p. 525-529.
  • Analyse par F. Müller: J F M, Bd. 30, J. 1899, S. 23-24.
  • Traduction en anglais par Edgar Odell Lovett: B A M S, v. 5, 1898-1899, Apr. 1899, p. 367-370.

3. Sur Moutard.

  • C R, t. 132, 11 mars 1901, p. 614-616.

4. Sur les Travaux scientifiques de Michel Chasles.

  • B S M, 2e s., t. 4, 1re p., déc. 1880, p. 436-442.

5. Sur Albert Gauthier-Villars.

M. G. Darboux, après MM. Ch. Wolf et J. Bertrand, rappelle les titres de M. A. Gauthier-Villars à la reconnaissance du monde savant.

  • C R, t. 126, 7 fév. 1898, p. 453-454.

6. La Vie et les Travaux de Paul Serret.

  • C R, t. 127, 4 juil. 1898, p. 37-38.

7. Sur Amédée Mannheim.

  • P L M S, 2e s., v. 5, Feb. 14, 1907, p. XIII.

8. Sur Marcelin Berthelot.

  • J S, n. s., 5e a., avr. 1907, p. 226-231.

9. Sur Henri de Parville.

  • C R, t. 149, 12 juil. 1909. p. 77.

10. Sur Hébert, Hermite, Duchartre, Pasteur, Tisserand, Hermite, A. Joly, Friedel, de Lacaze-Duthiers.

  • U P R, 1889-90, p. 57-58;—1892-93, p. 56-57;—1894-95, p. 61-62;—1894-95, p. 63-65;—1895-96, p. 64-66;—1896-97, p. 63-64;—1897-98, p. 56-57;—1898-99, p. 59-60;—1901-1902, p. 65.

RAPPORTS.

1. Rapport relatif à la Répartition du Fonds Bonaparte.

  • C R, t. 146, 29 juin 1908, p. 1431-1436.

2. Rapport relatif à la Fondation Jean Debrousse.

  • I F, 16 juin 1909, 16 p.

3 à 6. Rapports sur divers Concours de Prix décernés par l'Académie des Sciences.

  • Grand prix des Sciences mathématiques (Géométrie):
    C R, t. 119, 17 déc. 1894, p. 1050-1051.
    C R, t. 147, 7 déc. 1908, p. 1104-1109.
  • Prix Petit d'Ormoy:
    C R, t. 121, 23 déc. 1895, p. 1057.
  • Prix Bordin (Géométrie):
    C R, t. 129, 18 déc. 1899, p. 1064-1066.

7. Rapport sur le Mémoire de M. Désiré André,

Intitulé Sur le triangle des séquences.

  • C R, t. 118, 7 mai 1894, p. 1026-1028.

ARTICLES.

1. Sur une méthode nouvelle pour l'étude des courbes tracées sur les surfaces algébriques.

Nous avons déjà parlé à nos Lecteurs (B S M, t. 1, 1870, p. 129-130) des travaux récents de quelques géomètres, MM. Clebsch, Cremona, Nöther, Zeuthen, etc., sur une méthode nouvelle dont l'origine et la première application se trouvent dans les travaux de M. Chasles sur les courbes algébriques tracées sur les surfaces du second degré. Cette méthode devant conduire à des conséquences très importantes, il m'a paru utile de la faire connaître et d'en développer les principes, en ce moment surtout où elle est encore récente.  G. D.

  • B S M, t. 2, 1871, p. 23-32, 184-192, 221-224, 314-319;—t. 3, 1872, p. 221-224, 251-256, 281-285.

2. Hommage à J.-A. Serret,

Publié par M. G. Darboux au début de son Avertissement de la 4e édition de la Mécanique analytique de J.-L. Lagrange.

  • Œuvres de Lagrange, t. XI, 1888, p. XXI.

3 à 8. Au sujet de l'Association Internationale des Académies:

Communication de M. Darboux.

  • C R, t. 131, 2 juil. 1900, p. 6-9.—R R, 4e s., t. 14, 21 juil. 1900, p. 94-95.

Compte rendu des Séances tenues à Paris, les 31 juillet et 1er août 1900, par le Comité de cette Association, sous la direction de l'Académie des Sciences, rédigé par M. G. Darboux, Président de l'Assemblée.

  • A A I A, Pièce no 2, Paris, G.-V., 1900, p. 5-13.

Historique de l'Association Internationale des Académies, fait par M. G. Darboux en analysant les Comptes rendus des réunions de Göttingue, les 31 mai et 1er juin 1898; de Wiesbaden, les 9 et 10 octobre 1899; de Paris, les 31 juillet et 1er août 1900.

  • J S, janv. 1901, p. 5-23.

Compte rendu préliminaire des Séances de la troisième Assemblée générale de cette Association, tenue à Vienne du 28 mai au 2 juin 1907.

  • C R, t. 144, 10 juin 1907, p. 1245.

Sur la troisième Assemblée générale de cette Association, réunie à Vienne du 28 mai au 2 juin 1907.

  • J S, n. s., 5e a., août 1907, p. 401-414.

Résumé du Compte rendu de la quatrième Assemblée générale de cette Association, réunie à Rome du 1er au 3 juin 1909.

  • C R, t. 148, 7 juin 1909, p. 1484.

9. 10. L'Académie des Sciences, dans l'Ouvrage intitulé L'Institut de France.

M. G. Darboux donne une idée nette de l'organisation de l'Académie des Sciences depuis sa fondation et des services que celle-ci a rendus à la Science et au Pays.

  • Paris, A. M., H. L., 1909, in-fol., t. II, p. 35-60.
  • Paris, H. L., 1907, gr. in-8, p. 1-54.
  • Analyse par G. Darboux: C R, t. 145, 9 déc. 1907, p. 1107-1108.
  • Analyse par A. Grazel: B D B, 75. J., n. 44, 22 Feb. 1908, S. 2167-2168.
  • Analyse par A. Jacobi: M G M N, J. 8., 1908-1909, S. 6-7.

11. Sur l'«International Catalogue of Scientific Literature» by the Royal Society of London.

  • J S, août 1901, p. 465-473.—B S M, 2e s., t. 26, 1re p., mars 1902, p. 58-67.
  • Analyse par F. Müller: J F M, Bd. 33, 1902, p. 3-4.

12. Publication de Lettres inédites dues à divers Savants.

Cet Article contient deux Lettres de Laplace à Condorcet, deux de Laplace à D'Alembert, une de Borda à Condorcet, une de Fuss à Condorcet, une de Jean Albert Euler à Condorcet. Il contient en outre une Remarque de M. G. Darboux: Voir no 27, p. 19.

  • B S M, 2e s., t. 3, 1re p., mai 1879, p. 206-228.

ANALYSES.

1 à 17. Analyses des Œuvres suivantes:

Œuvres complètes de Niels Henrik Abel, publiées par Sylow et Lie.

  • B S M, 2e s., t. 5, 1re p., déc. 1881, p. 457-462.

Œuvres de Lagrange, Tome XIV.

  • C R, t. 115, 21 nov. 1892, p. 853-854.

Édition nouvelle de Diophante, par Paul Tannery, Tome I.

  • C R, t. 116, 2 janv. 1893, p. 18.

Gesammelte wissenschaftliche Abhandlungen von Julius Plücker. Erster Band herausgegeben von A. Schœnflies.

  • B S M, 2e s., t. 20, 1re p., nov. 1896, p. 277-278.

The collected Mathematical Papers of A. Cayley.

  • B S M, 2e s., t. 17, juin 1893, p. 141-142;—t. 21, mars 1897, p. 66-67;—t. 22, janv. 1898, p. 23.

Ludwig Otto Hesse's gesammelte Werke.

  • B S M, 2e s., t. 21, 1re p., mars 1897, p. 65-66.

Œuvres de P. L. Tchebycheff, publiées par MM. A. Markoff et N. Sonin. Tome I.

  • B S M, 2e s., t. 24, 1re p., janv. 1900, p. 28-29.

Carl Friedrich Gauss' Werke. Achter Band.

  • Ce Tome VIII a été publié sous la direction de M. Felix Klein.
  • J S, nov. 1900, p. 668-678.—B S M, 2e s., t. 24, 1re p., déc. 1900, p. 269-280.

Opere matematiche di Francesco Brioschi.

  • B S M, 2e s., 1re p., t. 25, juin 1901, p. 94-96;—t. 28, oct. 1904, p. 266-267;—t. 33, oct. 1909, p. 227.

The Collected Mathematical Papers of James Joseph Sylvester:

  • B S M, 2e s., t. 28, 1re p., oct. 1904, p. 265-266;—2e s., t. 32, 1re p., juin 1908, p. 163-165.

Œuvres de Laguerre, publiées par Ch. Hermite, H. Poincaré, E. Rouché.

  • B S M, 2e s., t. 29, 1re p., juin 1905, p. 158-161.

Œuvres de Charles Hermite, publiées par Émile Picard.

  • B S M, 2e s., t. 29, 1re p., nov. 1905, p. 313-315;—t. 32, 1re p., juin 1908, p. 161-162.

Œuvres scientifiques de L. Lorentz, revues et annotées par H. Valentiner.

  • B S M, 2e s., t. 22, 1re p., juil. 1898, p. 167;—t. 29, 1re p., mars 1905, p. 57-58.

Scientific Papers of Peter Guthrie Tait. Volume I.

  • B S M, 2e s., t. 23, 1re p., juin 1899, p. 129-130.

Mathematical and Physical Papers of Sir G. G. Stokes.

  • B S M, 2e s., t. 28, 1re p., nov. 1904, p. 281.

Hermann Grassmann's gesammelte mathematische und physikalische Werke. II. Band: I. Theil, II. Theil.

  • B S M, 2e s., t. 29, 1re p., mars 1905, p. 67-68.

Souvenirs de Marine, par l'Amiral Paris. VIe Partie.

  • C R, t. 147, 19 oct. 1908, p. 659-660.

18 à 63. Analyses des Ouvrages suivants:

Traité de Calcul différentiel et de Calcul intégral, par J. Bertrand.

  • B S M, t. 1, fév. 1870, p. 41-49.

Vorlesungen über die Theorie der bestimmten Integrale zwischen reellen Grenzen, mit vorzüglicher Berücksichtigung der von P. Gustav Lejeune-Dirichlet im Sommer 1858 gehaltenen Vorträge über bestimmte Integrale von Gustav Ferdinand Meyer.

  • B S M, t. 2, août 1871, p. 228-231.

Éléments de Calcul infinitésimal, par J.-M.-C. Duhamel.

  • B S M, t. 11, déc. 1876, p. 241-244.

Cours de Calcul infinitésimal, par J. Hoüel.

  • B S M, 2e s., t. 4, 1re p., janv. 1880, p. 5-9;—t. 7, 1re p., avr. 1883, p. 97-99.

Lezioni di Geometria differenziale, di L. Bianchi.

  • B S M, t. 21, 1re p., oct. 1897, p. 253-257.

Vorlesungen über differenzial Geometrie, von L. Bianchi. Uebersetzung von Max Lukat.

  • B S M, 2e s., t. 23, 1re p., déc. 1899, p. 323.

Théorie de la multiplication et de la transformation des Fonctions elliptiques, par Paul Mansion.

  • B S M, t. 1, juil. 1870, p. 206-207.

Théorie des Fonctions elliptiques, par Briot et Bouquet.

  • B S M, t. 6, fév. 1874, p. 65-69;—t. 7, nov. 1874, p. 193-195.

Vorlesungen über die Theorie der elliptischen Functionen, von Königsberger.

  • B S M, t. 9, oct. 1875, p. 145-147.

Trattato elementare delle Funzioni elliptiche, di Cayley. Traduzione di Jorini e F. Brioschi.

  • B S M, 2e s., t. 4, fév. 1880, p. 33-34.

Researches in the Calculus of Variations, principally on the Theory of discontinuous Solution, by I. Todhunter.

  • B S M, t. 4, juin 1873, p. 273-277.

Wolfangi Bolyai de Bolya. Tentamen juventutem studiosam in elementa Matheseos puræ elementaris ac sublimioris... Ediderunt J. König et M. Réthy.

  • B S M, 2e s., t. 22, 1re p., juin 1898, p. 131-132.

Theorie der algebraischen Gleichungen, von J. Petersen.

  • B S M, 2e s., t. 2, 1re p., juil. 1878, p. 275-276.

Obras sobre Mathematica, publicadas por ordem do governo portugués, por F. Gomes Teixeira.

  • B S M, 2e s., t. 29, 1re p., fév. 1905, p. 29-30.

Die Auflösung der bestimmten Gleichungen (Analyse des équations indéterminées), von J.-B. Fourier. Uebersetzung von Alfred Lœwy.

  • B S M, 2e s., t. 29, 1re p., mars 1905, p. 79.

Encyclopädie der Elementar-Mathematik, von H. Weber und I. Wellstein. Erster Band: Elementare Algebra und Analysis.

  • B S M, 2e s., t. 29, 1re p., juin 1905, p. 161-166.

Éléments de la théorie des Quaternions, par J. Hoüel.

  • B S M, t. 8, janv. 1875, p. 9-13.

Principes de la Géométrie analytique; Géométrie dans l'espace, par L. Painvin.

  • B S M, t. 4, mai 1873, p. 228-231.

A Treatise on the Analytic Geometry of three Dimensions, by G. Salmon.Analytische Geometrie des Raumes, von G. Salmon. Deutsch bearbeitet von W. Fiedler.

  • B S M, t. 8, fév. 1875, p. 65-67.

Die ebenen Curven dritter Ordnung, von H. Durège.

  • B S M, t. 3, janv. 1872, p. 7-10.

Ueber solche Minimalflächen, welche eine vorgeschriebene ebene Curve zur geodätischen Linie haben, von L. Henneberg.

  • B S M, t. 9, oct. 1875, p. 148-149.

Bestimmung zweier speciellen periodischen Minimalflächen, auf welchen unendlich viele gerade Linien und unendlich viele ebene geodätische Linien liegen, von E. R. Neovius.

  • B S M, 2e s., t. 7, 1re p., avr. 1883, p. 99-103.

Handbuch der Kugel' Funktionen. Theorie und Anwendungen. Von E. Heine.

  • B S M, 2e s., 1re p., t. 2, sept. 1878, p. 371-372;—t. 6, fév. 1882, p. 37-38.

Theorie des Transformationsgruppen, von Sophus Lie.

  • C R, t. 106, 25 juin 1888, p. 1815.

Die Focaleigenschaften der Flächen zweiter Ordnung, von O. Staude.

  • B S M, 2e s., t. 21, 1re p., juil. 1897, p. 174-177.

General Investigations of Curved Surfaces of 1827 and 1825, by K. F. Gauss. Translated by J. C. Morehead and A. M. Hiltebeitel.

  • B S M, 2e s., t. 26, 1re p., oct. 1902, p. 289-290.

Ueber die Enneper'schen Flächen mit constantem positivem Krümmungsmass, bei denen die eine Schaar der Krümmungslinien von ebenen Curven gebildet wird, von G. Bockwoldt.

  • B S M, 2e s., t. 2, 1re p., sept. 1878, p. 369-370.

Grundlagen einer Krümmungslehre der Curvenschaaren, von R. v. Lilienthal.

  • B S M, 2e s., t. 22, 2e p., juin 1898, p. 129-130.

Theorie der Flächen mit ebenen und sphærischen Krümmungslinien, von H. Dobriner.

  • B S M, 2e s., t. 29, 1re p., mars 1905, p. 68-69.

Kummer's quartic Surface, by R. W. H. T. Hudson.

  • B S M, 2e s., t. 30, 1re p., janv. 1906, p. 9-10.

Géométrie de direction, par Paul Serret.

  • B S M, t. 1, janv. 1870, p. 9-16, 200.

Rapport sur les Progrès de la Géométrie, par Michel Chasles.

  • B S M, t. 2, janv. 1871, p. 7-8.

A Treatise on some new Geometrical Methods, by J. Booth.

  • B S M, t. 6, mars 1874, p. 113-116.

Aperçu historique sur l'origine et le développement des méthodes en Géométrie, par Michel Chasles.

  • B S M, t. 9, sept. 1875, p. 97-98.

Il passato ed il presente delle principali Teorie geometriche, di Gino Loria.

  • B S M, 2e s., 1re p., t. 21, juin 1897, p. 170-172;—t. 33, mars 1909, p. 69.

Urkunden zur Geschichte der Nicht-Euklidischen Geometrie, herausgegeben von Friedrich Engel und Paul Stäckel.

  • B S M, 2e s., t. 24. 1re p., mai 1900, p. 118-120.

Wissenschaft und Hypothese, von H. Poincaré. Deutsche Ausgabe von F. und L. Lindemann.

  • B S M, 2e s., t. 29, 1re p., fév. 1905, p. 30-31.

La Statique graphique et ses applications aux constructions, par Maurice Levy.

  • B S M, t. 8, janv. 1875, p. 13-17.

Théorie Mécanique de la Chaleur, par Ch. Briot.

  • B S M, t. 1, mars 1870, p. 85-87.

Cours de Physique mathématique, par Émile Mathieu.

  • B S M, t. 4, mai 1873, p. 231-233.

Reprint of Papers on Electrostatics and Magnetism, by Sir William Thomson.

  • B S M, t. 5, juil. 1873, p. 7-9.

Compte rendu de l'Inauguration à Kasan du monument de N. Lobatchefsky et Éloge historique de N. Lobatchefsky prononcé par M. A. Vassilief.

  • C R, t. 124, 3 mai 1897, p. 936-937.

Briefwechsel zwischen Carl Friedrich Gauss und Wolfgang Bolyai, herausgegeben von Franz Schmidt und Paul Stäckel.

  • B S M, 2e s., t. 23, 1re p., déc. 1899, p. 321-322.

Jacob Steiner's Lebensjahre in Berlin, 1821-1863, von Julius Lange.

  • B S M, 2e s., t. 23, 1re p., déc. 1899, p. 319-321.

Correspondance d'Hermite et de Stieltjes, publiée par B. Baillaud et H. Bourget, avec une Préface de Émile Picard.

  • B S M, 2e s., t. 29, 1re p., avr., déc. 1905, p. 96-99, 331-336.

Problèmes plaisants et délectables qui se font par les nombres par C.-G. Bachet; 3e édition revue par A. Labosne.

  • B S M, t. 7., nov. 1874, p. 195-197.

64 à 73. Analyses des Mémoires suivants:

Die linearen Transformationen der Hermite'schen φ-Funktion, von Königsberger.

  • B S M, t. 2, déc. 1871, p. 353-354.

Zur Theorie der binären algebraischen Formen, von A. Clebsch.

  • B S M, t. 2, déc. 1871, p. 360-361.

Ueber die Bewegung eines Körpers in einer Flüssigkeit von A. Clebsch.

  • B S M, t. 2, déc. 1871, p. 358-360.

Ueber die Jacobi-Hamilton'sche Integrationsmethode der partiellen Differentialgleichungen, von A. Mayer.

  • B S M, t. 2, déc. 1871, p. 364-366.

Sur les singularités ordinaires d'une courbe gauche et d'une surface développable, par H. G. Zeuthen.

  • B S M, t. 1, mai 1870, p. 139-152.

Étude sur le déplacement d'une figure de forme invariable; nouvelle méthode des normales; applications, par A. Mannheim.

  • B S M, t. 1, oct. 1870, p. 297-302.

Ueber die Haupttangenten-Curven der Kummer'schen Fläche vierten Grades mit 16 Knotenpunkten, von Felix Klein und Sophus Lie.

  • B S M, t. 2, mars 1871, p. 72-74.

Untersuchungen über die Flächen mit planen und sphärischen Krümmungslinien, von A. Enneper.

  • B S M, 2e s., t. 2, 1re p., oct. 1878, p. 432-433.

Étude des élassoïdes ou surfaces à courbure moyenne nulle, par A. Ribaucour.

  • B S M, 2e s., t. 6, 1re p., janv. 1882, p. 11-14.

Sull' equilibrio delle superficie flessibili ed inextensibili, di E. Beltrami.

  • B S M, 2e s., t. 6, 1re p., fév. 1882, p. 38-40.

SECTION VII.
PUBLICATIONS DIVERSES.

MÉMOIRES. NOTES.

Mathématiques.

1. Sur l'extraction de la racine carrée.

  • B S M, 2e s., t. 11, juil. 1887, p. 176-184.

2. Sur le maximum du produit de plusieurs facteurs positifs dont la somme est constante.

  • B S M, 2e s., t. 11, 1re p., juin 1887, p. 149-151.

3. Note relative à un Article de M. André Durand,

Intitulé Sur un théorème relatif à des moyennes.

  • B S M, 2e s., t. 26, 1re p., juin 1902, p. 183-184.
  • Analyse par Weiltzien: J F M, Bd. 33, J. 1902, S. 283-284.

4. Discussion de la fraction rationnelle du second degré.

  • N A M, 2e s., t. 8, fév. 1869, p. 81-86.

5. Sur l'application du Calcul des Probabilités.

Rapport fait par MM. Darboux, Appell et Poincaré, sur l'Ordonnance du 18 avril 1904 de la Cour de Cassation.

  • E C C, t. III, 1909, p. 500-600.

6. Sur un problème de Géométrie élémentaire.

Étant donné un polygone plan ou gauche, on forme un second polygone en joignant les milieux de ses côtés, un troisième en joignant les milieux des côtés du second, et ainsi de suite indéfiniment. M. G. Darboux démontre que ces polygones deviennent de plus en plus petits et qu'ils tendent à devenir semblables à des polygones semi-réguliers inscrits dans une ellipse.

  • B S M, 2e s., t. 2, 1re p., juil. 1878, p. 298-304.

7. Sur un problème de courriers.

Cet intéressant problème est ainsi énoncé: n personnes doivent se rendre d'une localité à une autre; elles ont à leur disposition une voiture pouvant contenir n' personnes (n' < n). Chaque personne, à pied, ferait le trajet en un temps t, et la voiture le ferait dans le temps t' (t' < t). On demande le meilleur mode d'utilisation de la voiture.

  • I M, t. 5, juin 1898, p. 122-123.

8. Problèmes de Géométrie.

Questions proposées:

  • N A M, 2e s., t. 5, 1866, p. 48, 95;—t. 7, 1868, p. 137, 138 (4), 237, 334;—t. 8, 1869, p. 47;—t. 10, 1871, p. 336 (2);—3e s., t. 10, 1891, p. 24, 25.

DISCOURS.

1. 2. A deux Distributions solennelles des Prix,

Discours prononcés par M. G. Darboux, en qualité de Président.

  • Palmarès du Lycée Saint-Louis, à Paris, 5 août 1890, in-8, p. XXVIII-XXX.
  • Palmarès du Lycée de Nîmes, 1891, in-8, p. 23-25.

3. A la célébration du XXVe anniversaire de la Fondation de l'Enseignement secondaire des jeunes filles et de la Création de l'École normale de cet Enseignement, à Sèvres, le 18 mai 1907,

Discours prononcé par M. Gaston Darboux au nom des Professeurs.

  • L'Enseignement secondaire des jeunes filles, 26e a., 15 juin 1907, Paris, Cerf, in-8, p. 304-308.

4. Félicitations adressées par M. G. Darboux à M. Ph. van Tieghem,

A l'occasion de son élection comme Secrétaire perpétuel de l'Académie des Sciences pour les Sciences physiques.

  • C R, t. 147, 2 nov. 1908, p. 773-774.

5. Au dîner annuel de la «Conciliation Internationale», le 23 mars 1909,

Donné en l'honneur de la présence à Paris du Prof. W. Fœrster et des Membres du Comité International des Poids et Mesures, Discours prononcé par M. G. Darboux.

  • Conciliation Internationale, no 4, avr. 1909, Paris, D., in-16, p. 23-26.

6 à 14. A des Séances publiques annuelles de la Société de secours des Amis des Sciences,

Allocutions prononcées par M. G. Darboux, en qualité de Président du Conseil d'administration de la Société.

  • S S A S, 29 juin 1901, p. 51-55;—30 mai 1902, p. 17-20;—19 juin 1903, p. 17-22;—19 mai 1904, p. 17-20;—6 juin 1905, p. 15-19;—26 avr. 1906, p. 15-19;—29 juin 1907, p. 15-20;—25 juin 1908, p. 15-18;—8 juin 1909, p. 83-89.

RAPPORTS.

1. Rapport du Conseil général des Facultés de l'Université de Paris au Ministre de l'Instruction publique.

Signé: Le Président du Conseil général: O. Gréard; Le Rapporteur: G. Darboux.

  • U P R, 1888-89, p. I-XIV.

2 à 15. Rapports au Conseil académique de Paris sur la situation de l'Enseignement supérieur,

Rédigés par M. G. Darboux, en qualité de Doyen de la Faculté des Sciences de Paris.

  • U P R, 1888-89, p. 39-52;—1889-90, p. 55-74;—1890-91, p. 43-59;—1891-92, p. 47-65;—1892-93, p. 53-74;—1893-94, p. 53-75;—1894-95, p. 59-86;—1895-96, p. 61-78;—1896-97, p. 61-78;—1897-98, p. 53-71;—1898-99, p. 57-76;—1899-1900, p. 59-78;—1900-1901, p. 67-85;—1901-1902, p. 63-82.

16 à 18. Rapports au Conseil supérieur de l'Instruction publique,

Présentés par M. G. Darboux, en qualité de Membre de ce Conseil:

Sur les projets de Décret relatif à la Licence ès sciences. Séance du 17 janvier 1896.

  • B M I P, t. 59, no 1197, 1er fév. 1896, p. 147, 152-156.

Sur le projet de Décret relatif aux Droits à percevoir au profit des Universités. Séance du 9 juillet 1897.

  • B M I P, t. 62, nos 1275, 1285, 7 août, 16 oct. 1897, p. 569-571, 987.

Sur un projet de Décret relatif au Doctorat ès sciences. Séance du 13 janvier 1898.

  • B M I P, t. 63, nos 1298, 1300, 22 janv., 5 févr. 1898, p. 67-71, 156.

19. Rapport sur le calculateur Jacques Inaudi.

  • C R, t. 114, 7 juin 1892, p. 1335-1338;—8 fév. 1892, p. 275.—R O, t. 3, 15 juin 1892, p. 417-418.

COMPTES RENDUS.

1. Sur la Conférence tenue à Copenhague par l'Association géodésique internationale en 1903.

  • C R, t. 137, 17 août 1903, p. 393.

2. Sur le IVe Congrès des Mathématiciens, à Rome, en 1908.

  • C R, t. 146, 21 avr. 1908, p. 845-846.

ARTICLES.

1. La réforme de la Licence ès sciences.

  • R I E, t. 31, 15 fév. 1896, p. 105-111.

2. Sur les trois Cuirassés Français «Justice, Liberté, Vérité».

Lettre adressée à M. A. Hébrard, directeur du journal Le Temps, par M. G. Darboux, Représentant du Gouvernement Français aux Fêtes organisées par la Ville et l'État de New York en l'honneur de Hudson et de Fulton.

  • Le Temps, 49e a., no 17628, 2 oct. 1909, in-fol., p. 1.

PRÉFACES. ANALYSES.

1. Préface de l'Ouvrage de M. E. Fabry,

Intitulé Traité de Mathématiques générales.

  • Paris, Hn., 1909, gr. in-8, p. V-X.—B S M, 2e s., t. 32, 1re p., sept. 1908, p. 253-258.

2. Avertissement du «Bulletin des Sciences mathématiques et astronomiques».

Ce Bulletin est publié sous la Direction de la Commission des Hautes Études, depuis le mois de janvier 1870.

  • B S M, t. 1, janv. 1870, p. VII-VIII;—2e s., t. 9, 1re p., janv. 1885, p. 5.
  • Dans l'Ouvrage intitulé Rapports des Directeurs de Laboratoires et de Conférences de l'École pratique des Hautes Études, 1868-1877, le Président de la Section des Sciences mathématiques, M. Chasles, a fait reproduire une partie de cet Avertissement et donner un aperçu des matières contenues dans le Bulletin, de 1870 à 1877: Paris, I. N., 1879, in-4, p. 6-7.

3 à 6. Avant-Propos du Tome I, Avertissement du Tome II, et Notes dans les Tomes I et II des «Œuvres de Fourier».

Publiées par M. G. Darboux.

  • Œuvres de Fourier, t. I, 1888, p. V-IX, 16-17, 117, 120, 124, 130, 150, 158, 166, 191-193, 206, 208-209, 233, 234, 245, 260, 271-273, 283-284, 313, 329-330, 336, 341, 344, 357, 361-362, 376, 404, 409, 418, 437-438, 443, 457, 460, 462, 480, 492-493, 499, 506, 508-509, 511-512;—t. II, 1900, p. V-VIII, 17-18, 93-94, 148, 149, 215, 248, 250-251, 275-276, 310-314, 320-321, 525-526, 617.—B S M, t. 12, mars 1888, p. 57-59.
  • Présentation par M. G. Darboux de cet Ouvrage à l'Académie des Sciences: C R, t. 106, 5 mars 1888, p. 635-636;—t. 110, 21 avril 1890, p. 837.
  • Appréciation des Notes par Émile Picard: R O, t. 1, 30 nov. 1890, p. 706.

7. 8. Avertissement et Notes de la quatrième édition de la «Mécanique analytique de J.-L. Lagrange»,

Publiée par Gaston Darboux.

  • Œuvres de Lagrange, t. XI, 24 juin 1888, p. XXI-XXII, 68-69, 87, 99, 104-105, 112, 160, 311, 492-497.

9 à 11. Analyses succinctes d'Ouvrages.

  • C R, t. 109, 1889, p. 933;—t. 112, 1891, p. 591;—t. 113, 1891, p. 1078;—t. 120, 1895, p. 589;—t. 121, 1895, p. 157.
  • B S M, t. 1, 1870, p. 175;—t. 2, 1871, p. 71, 289;—t. 3, 1872, p. 33, 168;—t. 4, 1873, p. 39, 278.
  • B S M, 2e s., 1re p., t. 3, 1879, p. 248;—t. 18, 1894, p. 241;—t. 19, 1895, p. 57;—t. 20, 1896, p. 23, 276, 278;—t. 24, 1900, p. 195;—t. 27, 1903, p. 343;—t. 28, 1904, p. 97;—t. 29, 1905, p. 31, 32;—t. 32, 1908, p. 48.

12. Analyses succinctes de Mémoires.

  • B S M, t. 1, 1870, p. 157, 159, 198, 200;—t. 2, 1871, p. 263-267 (6), 354-358 (9), 361-364 (8), 366-368 (8);—t. 3, 1872, p. 68, 169, 289;—t. 4, 1873, p. 45-50 (12).

(Le nombre des Écrits de M. Gaston Darboux est de 419).


44297

Paris.—Imp. Gauthier-Villars, 55, quai des Grands-Augustins.

 

Expressions mathématiques:

Expression 1: ψ' (√u2 + k2 ) u/√u2 + k2

Expression 2: ρ2 dθ/dt = mρ2 + n

Expression 3: ρ dρ/dt = k √ –F(ρ2)

Chargement de la publicité...