Recherches sur les substances radioactives
The Project Gutenberg eBook of Recherches sur les substances radioactives
Title: Recherches sur les substances radioactives
Author: Marie Curie
Release date: July 16, 2013 [eBook #43233]
Most recently updated: October 23, 2024
Language: French
Credits: E-text prepared by Claudine Corbasson and the Online Distributed Proofreading Team (http://www.pgdp.net) from page images generously made available by Internet Archive (http://archive.org)
The Project Gutenberg eBook, Recherches sur les substances radioactives, by Marie Curie
| Note: | Images of the original pages are available through Internet Archive. See http://archive.org/details/recherchessurles00curi |
PARIS.—IMPRIMERIE GAUTHIER-VILLARS,
35119——Quai des Grands-Augustins, 55.
RECHERCHES
SUR LES
SUBSTANCES RADIOACTIVES.
INTRODUCTION.
Le présent travail a pour but d'exposer les recherches que je poursuis depuis plus de 4 ans sur les substances radioactives. J'ai commencé ces recherches par une étude du rayonnement uranique qui a été découvert par M. Becquerel. Les résultats auxquels ce travail me conduisit parurent ouvrir une voie si intéressante, qu'abandonnant ses travaux en train, M. Curie se joignit à moi, et nous réunîmes nos efforts en vue d'aboutir à l'extraction des substances radioactives nouvelles et de poursuivre leur étude.
Dès le début de nos recherches nous avons cru devoir prêter des échantillons des substances découvertes et préparées par nous à quelques physiciens, en premier lieu à M. Becquerel, à qui est due la découverte des rayons uraniques. Nous avons ainsi nous-mêmes facilité les recherches faites par d'autres que nous sur les substances radioactives nouvelles. A la suite de nos premières publications, M. Giesel en Allemagne se mit d'ailleurs aussi à préparer de ces substances et en prêta des échantillons à plusieurs savants allemands. Ensuite ces substances furent mises en vente en France et en Allemagne, et le sujet prenant de plus en plus d'importance donna lieu à un mouvement scientifique, de sorte que de nombreux Mémoires ont paru et paraissent constamment sur les corps radioactifs, principalement à l'étranger. Les résultats des divers travaux français et étrangers sont nécessairement enchevêtrés, comme pour tout sujet d'études nouveau et en voie de formation. L'aspect de la question se modifie, pour ainsi dire, de jour en jour.
Cependant, au point de vue chimique, un point est définitivement établi; c'est l'existence d'un élément nouveau fortement radioactif: le radium. La préparation du chlorure de radium pur et la détermination du poids atomique du radium constituent la partie la plus importante de mon travail personnel. En même temps que ce travail ajoute aux corps simples actuellement connus avec certitude un nouveau corps simple de propriétés très curieuses, une nouvelle méthode de recherches chimiques se trouve établie et justifiée. Cette méthode, basée sur la radioactivité, considérée comme une propriété atomique de la matière, est précisément celle qui nous a permis, à M. Curie et moi, de découvrir l'existence du radium.
Si, au point de vue chimique, la question que nous nous sommes primitivement posée peut être considérée comme résolue, l'étude des propriétés physiques des substances radioactives est en pleine évolution. Certains points importants ont été établis, mais un grand nombre de conclusions portent encore le caractère du provisoire. Cela n'a rien d'étonnant, si l'on considère la complexité des phénomènes auxquels donne lieu la radioactivité et les différences qui existent entre les diverses substances radioactives. Les recherches des divers physiciens qui étudient ces substances viennent constamment se rencontrer et se croiser. Tout en cherchant à me conformer au but précis de ce travail et à exposer surtout mes propres recherches, j'ai été obligée d'exposer en même temps les résultats d'autres travaux dont la connaissance est indispensable.
J'ai d'ailleurs désiré faire de ce travail un Mémoire d'ensemble sur l'état actuel de la question.
J'ai exécuté ce Travail dans les laboratoires de l'École de Physique et de Chimie industrielles de la Ville de Paris avec l'autorisation de Schützenberger, le regretté Directeur de cette École, et de M. Lauth, le Directeur actuel. Je tiens à exprimer ici toute ma reconnaissance pour l'hospitalité bienveillante que j'ai reçue dans cette École.
HISTORIQUE.
La découverte des phénomènes de la radioactivité se rattache aux recherches poursuivies depuis la découverte des rayons Röntgen sur les effets photographiques des substances phosphorescentes et fluorescentes.
Les premiers tubes producteurs de rayons Röntgen étaient ces tubes sans anticathode métallique. La source de rayons Röntgen se trouvait sur la paroi de verre frappée par les rayons cathodiques; en même temps cette paroi était vivement fluorescente. On pouvait alors se demander si l'émission de rayons Röntgen n'accompagnait pas nécessairement la production de la fluorescence, quelle que fût la cause de cette dernière. Cette idée a été énoncée tout d'abord par M. Henri Poincaré[1].
Peu de temps après, M. Henry annonça qu'il avait obtenu des impressions photographiques au travers du papier noir à l'aide du sulfure de zinc phosphorescent[2]. M. Niewenglowski obtint le même phénomène avec du sulfure de calcium exposé à la lumière[3]. Enfin, M. Troost obtint de fortes impressions photographiques avec de la blende hexagonale artificielle phosphorescente agissant au travers du papier noir et un gros carton[4].
Les expériences qui viennent d'être citées n'ont pu être reproduites malgré les nombreux essais faits dans ce but. On ne peut donc nullement considérer comme prouvé que le sulfure de zinc et le sulfure de calcium soient capables d'émettre, sous l'action de la lumière, des radiations invisibles qui traversent le papier noir et agissent sur les plaques photographiques.
M. Becquerel a fait des expériences analogues sur les sels d'uranium dont quelques-uns sont fluorescents[5]. Il obtint des impressions photographiques au travers du papier noir avec le sulfate double d'uranyle et de potassium.
M. Becquerel crut d'abord que ce sel, qui est fluorescent, se comportait comme le sulfure de zinc et le sulfure de calcium dans les expériences de MM. Henry, Niewenglowski et Troost. Mais la suite de ses expériences montra que le phénomène observé n'était nullement relié à la fluorescence. Il n'est pas nécessaire que le sel soit éclairé; de plus, l'uranium et tous ses composés, fluorescents ou non, agissent de même, et l'uranium métallique est le plus actif. M. Becquerel trouva ensuite qu'en plaçant les composés d'urane dans l'obscurité complète, ils continuent à impressionner les plaques photographiques au travers du papier noir pendant des années. M. Becquerel admit que l'uranium et ses composés émettent des rayons particuliers: rayons uraniques. Il prouva que ces rayons peuvent traverser des écrans métalliques minces et qu'ils déchargent les corps électrisés. Il fit aussi des expériences d'après lesquelles il conclut que les rayons uraniques éprouvent la réflexion, la réfraction et la polarisation.
Les travaux d'autres physiciens (Elster et Geitel, lord Kelwin, Schmidt, Rutherford, Beattie et Smoluchowski) sont venus confirmer et étendre les résultats des recherches de M. Becquerel, sauf en ce qui concerne la réflexion, la réfraction et la polarisation des rayons uraniques, lesquels, à ce point de vue, se comportent comme les rayons Röntgen, comme cela a été reconnu par M. Rutherford d'abord et ensuite par M. Becquerel lui-même.
CHAPITRE I.
~~~~
RADIOACTIVITÉ DE L'URANIUM ET DU THORIUM.
MINÉRAUX RADIOACTIFS.
Rayons de Becquerel.—Les rayons uraniques, découverts par M. Becquerel, impressionnent les plaques photographiques à l'abri de la lumière; ils peuvent traverser toutes les substances solides, liquides et gazeuses, à condition que l'épaisseur en soit suffisamment faible; en traversant les gaz, ils les rendent faiblement conducteurs de l'électricité[6].
Ces propriétés des composés d'urane ne sont dues à aucune cause excitatrice connue. Le rayonnement semble spontané; il ne diminue point d'intensité quand on conserve les composés d'urane dans l'obscurité complète pendant des années; il ne s'agit donc pas là d'une phosphorescence particulière produite par la lumière.
La spontanéité et la constance du rayonnement uranique se présentaient comme un phénomène physique tout à fait extraordinaire. M. Becquerel a conservé un morceau d'uranium pendant plusieurs années dans l'obscurité et il a constaté qu'au bout de ce temps l'action sur la plaque photographique n'avait pas varié sensiblement. MM. Elster et Geitel ont fait une expérience analogue et ont trouvé également que l'action était constante[7].
J'ai mesuré l'intensité du rayonnement de l'uranium en utilisant l'action de ce rayonnement sur la conductibilité de l'air. La méthode de mesures sera exposée plus loin. J'ai ainsi obtenu des nombres qui prouvent la constance du rayonnement dans les limites de précision des expériences, c'est-à-dire à 2 pour 100 ou 3 pour 100 près[8].
On utilisait pour ces mesures un plateau métallique recouvert d'une couche d'uranium en poudre; ce plateau n'était d'ailleurs pas conservé dans l'obscurité, cette condition s'étant montrée sans importance d'après les observateurs cités précédemment. Le nombre des mesures effectuées avec ce plateau est très grand, et actuellement ces mesures portent sur un intervalle de temps de 5 années.
Des recherches furent faites pour reconnaître si d'autres substances peuvent agir comme les composés d'urane. M. Schmidt publia le premier que le thorium et ses composés possèdent également cette faculté[9]. Un travail analogue fait en même temps m'a donné le même résultat. J'ai publié ce travail, n'ayant pas encore eu connaissance de la publication de M. Schmidt[10].
Nous dirons que l'uranium, le thorium et leurs composés émettent des rayons de Becquerel. J'ai appelé radioactives les substances qui donnent lieu à une émission de ce genre[11]. Ce nom a été depuis généralement adopté.
Par leurs effets photographiques et électriques les rayons de Becquerel se rapprochent des rayons de Röntgen. Ils ont aussi, comme ces derniers, la faculté de traverser toute matière. Mais leur pouvoir de pénétration est extrêmement différent: les rayons de l'uranium et du thorium sont arrêtés par quelques millimètres de matière solide et ne peuvent franchir dans l'air une distance supérieure à quelques centimètres; tout au moins en est-il ainsi pour la grosse partie du rayonnement.
Les travaux de divers physiciens, et, en premier lieu, de M. Rutherford, ont montré que les rayons de Becquerel n'éprouvent ni réflexion régulière, ni réfraction, ni polarisation[12].
Le faible pouvoir pénétrant des rayons uraniques et thoriques conduirait à les assimiler aux rayons secondaires qui sont produits par les rayons Röntgen, et dont l'étude a été faite par M. Sagnac[13], plutôt qu'aux rayons Röntgen eux-mêmes.
D'autre part, on peut chercher à rapprocher les rayons de Becquerel de rayons cathodiques se propageant dans l'air (rayons de Lenard). On sait aujourd'hui que ces divers rapprochements sont tous légitimes.
Mesure de l'intensité du rayonnement.—La méthode employée consiste à mesurer la conductibilité acquise par l'air sous l'action des substances radioactives; cette méthode a l'avantage d'être rapide et de fournir des nombres qu'on peut comparer entre eux. L'appareil que j'ai employé à cet effet se compose essentiellement d'un condensateur à plateaux AB (fig. 1). La substance active finement pulvérisée est étalée sur le plateau B; elle rend conducteur l'air entre les plateaux. Pour mesurer cette conductibilité, on porte le plateau B à un potentiel élevé, en le reliant à l'un des pôles d'une batterie de petits accumulateurs P, dont l'autre pôle est à la terre. Le plateau A étant maintenu au potentiel du sol par le fil CD, un courant électrique s'établit entre les deux plateaux. Le potentiel du plateau A est indiqué par un électromètre E. Si l'on interrompt en C la communication avec le sol, le plateau A se charge, et cette charge fait dévier l'électromètre. La vitesse de la déviation est proportionnelle à l'intensité du courant et peut servir à la mesurer.
Mais il est préférable de faire cette mesure en compensant la charge que prend le plateau A, de manière à maintenir l'électromètre au zéro. Les charges, dont il est question ici, sont extrêmement faibles; elles peuvent être compensées au moyen d'un quartz piézo-électrique Q, dont une armature est reliée au plateau A, et l'autre armature est à terre. On soumet la lame de quartz à une traction connue produite par des poids placés dans un plateau π; cette traction est établie progressivement et a pour effet de dégager progressivement une quantité d'électricité connue pendant un temps qu'on mesure. L'opération peut être réglée de telle manière, qu'il y ait à chaque instant compensation entre la quantité d'électricité qui traverse le condensateur et celle de signe contraire que fournit le quartz[14]. On peut ainsi mesurer en valeur absolue la quantité d'électricité qui traverse le condensateur pendant un temps donné, c'est-à-dire l'intensité du courant. La mesure est indépendante de la sensibilité de l'électromètre.
En effectuant un certain nombre de mesures de ce genre, on voit que la radioactivité est un phénomène susceptible d'être mesuré avec une certaine précision. Elle varie peu avec la température, elle est à peine influencée par les oscillations de la température ambiante; elle n'est pas influencée par l'éclairement de la substance active. L'intensité du courant qui traverse le condensateur augmente avec la surface des plateaux. Pour un condensateur donné et une substance donnée le courant augmente avec la différence de potentiel qui existe entre les plateaux, avec la pression du gaz qui remplit le condensateur et avec la distance des plateaux (pourvu que cette distance ne soit pas trop grande par rapport au diamètre). Toutefois, pour de fortes différences de potentiel, le courant tend vers une valeur limite qui est pratiquement constante. C'est le courant de saturation ou courant limite. De même pour une certaine distance des plateaux assez grande, le courant ne varie plus guère avec cette distance. C'est le courant obtenu dans ces conditions qui a été pris comme mesure de radioactivité dans mes recherches, le condensateur étant placé dans l'air à la pression atmosphérique.
Voici, à titre d'exemple, des courbes qui représentent l'intensité du courant en fonction du champ moyen établi entre les plateaux pour deux distances des plateaux différentes. Le plateau B était recouvert d'une couche mince d'uranium métallique pulvérisé; le plateau A, réuni à l'électromètre, était muni d'un anneau de garde.
La figure 2 montre que l'intensité du courant devient constante pour les fortes différences de potentiel entre les plateaux. La figure 3 représente les mêmes courbes à une autre échelle, et comprend seulement les résultats relatifs aux faibles différences de potentiel. Au début, la courbe est rectiligne; le quotient de l'intensité du courant par la différence de potentiel est constant pour les tensions faibles, et représente la conductance initiale entre les plateaux.
On peut donc distinguer deux constantes importantes caractéristiques du phénomène observé: 1º la conductance initiale pour différences de potentiel faibles; 2º le courant limite pour différences de potentiel fortes. C'est le courant limite qui a été adopté comme mesure de la radioactivité.
En plus de la différence de potentiel que l'on établit entre les plateaux, il existe entre ces derniers une force électromotrice de contact, et ces deux causes de courant ajoutent leurs effets; c'est pourquoi la valeur absolue de l'intensité du courant change avec le signe de la différence de potentiel extérieure. Toutefois, pour des différences de potentiel notables, l'effet de la force électromotrice de contact est négligeable, et l'intensité du courant est alors la même, quel que soit le sens du champ entre les plateaux.
L'étude de la conductibilité de l'air et d'autres gaz soumis à l'action des rayons de Becquerel a été faite par plusieurs physiciens[15]. Une étude très complète du sujet a été publiée par M. Rutherford[16].
Les lois de la conductibilité produite dans les gaz par les rayons de Becquerel sont les mêmes que celles trouvées avec les rayons Röntgen. Le mécanisme du phénomène paraît être le même dans les deux cas. La théorie de l'ionisation des gaz par l'effet des rayons Röntgen ou Becquerel rend très bien compte des faits observés. Cette théorie ne sera pas exposée ici. Je rappellerai seulement les résultats auxquels elle conduit:
1º Le nombre d'ions produits par seconde dans le gaz est considéré comme proportionnel à l'énergie du rayonnement absorbé par le gaz;
2º Pour obtenir le courant limite relatif à un rayonnement donné, il faut, d'une part, faire absorber intégralement ce rayonnement par le gaz, en employant une masse absorbante suffisante; d'autre part, il faut utiliser pour la production du courant tous les ions créés, en établissant un champ électrique assez fort pour que le nombre des ions qui se recombinent devienne une fraction insignifiante du nombre total des ions produits dans le même temps, qui sont presque tous entraînés par le courant et amenés aux électrodes. Le champ électrique moyen nécessaire pour obtenir ce résultat est d'autant plus élevé que l'ionisation est plus forte.
D'après des recherches récentes de M. Townsend, le phénomène est plus complexe quand la pression du gaz est faible. Le courant semble d'abord tendre vers une valeur limite constante quand la différence de potentiel augmente; mais, à partir d'une certaine différence de potentiel, le courant recommence à croître avec le champ, et cela avec une rapidité très grande. M. Townsend admet que cet accroissement est dû à une ionisation nouvelle produite par les ions eux-mêmes quand ceux-ci, sous l'action du champ électrique, prennent une vitesse suffisante pour qu'une molécule du gaz, rencontrée par un de ces projectiles, se trouve brisée et divisée en ses ions constituants. Un champ électrique intense et une pression faible favorisent cette ionisation par les ions déjà présents, et, aussitôt que celle-ci commence à se produire, l'intensité du courant croît constamment avec le champ moyen entre les plateaux[17]. Le courant limite ne saurait donc être obtenu qu'avec des causes ionisantes, dont l'intensité ne dépasse pas une certaine valeur, de telle façon que la saturation corresponde à des champs pour lesquels l'ionisation par choc des ions ne peut encore avoir lieu. Cette condition se trouvait réalisée dans mes expériences.
L'ordre de grandeur des courants de saturation que l'on obtient avec les composés d'urane est de 10-11 ampères pour un condensateur dont les plateaux ont 8cm de diamètre et sont distants de 3cm. Les composés de thorium donnent lieu à des courants du même ordre de grandeur, et l'activité des oxydes d'uranium et de thorium est très analogue.
| i × 1011. | |
| Uranium métallique (contenant un peu de carbone) | 2,3 |
| Oxyde d'urane noir U2 O5 | 2,6 |
| Oxyde d'urane vert U3 O4 | 1,8 |
| Acide uranique hydraté | 0,6 |
| Uranate de sodium | 1,2 |
| Uranate de potassium | 1,2 |
| Uranate d'ammonium | 1,3 |
| Sulfate uraneux | 0,7 |
| Sulfate d'uranyle et de potassium | 0,7 |
| Azotate d'uranyle | 0,7 |
| Phosphate de cuivre et d'uranyle | 0,9 |
| Oxysulfure d'urane | 1,2 |
L'épaisseur de la couche du composé d'urane employé a peu d'influence, pourvu que la couche soit continue. Voici quelques expériences à ce sujet:
| Épaisseur de la couche. mm |
i × 1011. | |
| Oxyde d'urane | 0,5 | 2,7 |
| » | 3,0 | 3,0 |
| Uranate d'ammonium | 0,5 | 1,3 |
| » | 3,0 | 1,4 |
On peut conclure de là, que l'absorption des rayons uraniques par la matière qui les émet est très forte, puisque les rayons venant des couches profondes ne peuvent pas produire d'effet notable.
Les nombres que j'ai obtenus avec les composés de thorium[18] m'ont permis de constater:
1º Que l'épaisseur de la couche employée a une action considérable, surtout avec l'oxyde;
2º Que le phénomène n'est régulier que si l'on emploie une couche active mince (0mm,25 par exemple). Au contraire, quand on emploie une couche de matière épaisse (6mm), on obtient des nombres oscillant entre des limites étendues, surtout dans le cas de l'oxyde:
| Épaisseur de la couche. mm |
i × 1011. | ||
| Oxyde de thorium | 0,25 | 2,2 | |
| » | 0,5 | 2,5 | |
| » | 2,5 | 4,7 | |
| » | 3,0 | 5,5 | en moyenne |
| » | 6,0 | 5,5 | » |
| Sulfate de thorium | 0,25 | 0,8 |
Il y a dans la nature du phénomène une cause d'irrégularités qui n'existe pas dans le cas des composés d'urane. Les nombres obtenus pour une couche d'oxyde de 6mm d'épaisseur variaient entre 3,7 et 7,3.
Les expériences que j'ai faites sur l'absorption des rayons uraniques et thoriques ont montré que les rayons thoriques sont plus pénétrants que les rayons uraniques et que les rayons émis par l'oxyde de thorium en couche épaisse sont plus pénétrants que ceux qu'il émet en couche mince. Voici, par exemple, les nombres qui indiquent la fraction du rayonnement que transmet une lame d'aluminium dont l'épaisseur est 0mm,01:
| Substance rayonnante. | Fraction du rayonnement transmise par la lame. | |
| Uranium | 0,18 | |
| Oxyde d'urane U2 O5 | 0,20 | |
| Uranate d'ammonium | 0,20 | |
| Phosphate d'urane et de cuivre | 0,21 | |
| mm | ||
| Oxyde de thorium sous épaisseur | 0,25 | 0,38 |
| » » | 0,5 | 0,47 |
| » » | 3,0 | 0,70 |
| » » | 6,0 | 0,70 |
| Sulfate de thorium | 0,25 | 0,38 |
Avec les composés d'urane, l'absorption est la même quel que soit le composé employé, ce qui porte à croire que les rayons émis par les divers composés sont de même nature.
Les particularités de la radiation thorique ont été l'objet de publications très complètes. M. Owens[19] a montré que la constance du courant n'est obtenue qu'au bout d'un temps assez long en appareil clos, et que l'intensité du courant est fortement réduite par l'action d'un courant d'air (ce qui n'a pas lieu pour les composés d'uranium). M. Rutherford a fait des expériences analogues et les a interprétées en admettant que le thorium et ses composés émettent non seulement des rayons de Becquerel, mais encore une émanation, constituée par des particules extrêmement ténues, qui restent radioactives pendant quelque temps après leur émission et peuvent être entraînées par un courant d'air[20].
Les caractères de la radiation thorique qui sont relatifs à l'influence de l'épaisseur de la couche employée et à l'action des courants d'air ont une liaison étroite avec le phénomène de la radioactivité induite et de sa propagation de proche en proche. Ce phénomène a été observé pour la première fois avec le radium et sera décrit plus loin.
La radioactivité des composés d'uranium et de thorium se présente comme une propriété atomique. M. Becquerel avait déjà observé que tous les composés d'uranium sont actifs et avait conclu que leur activité était due à la présence de l'élément uranium; il a montré également que l'uranium était plus actif que ses sels[21]. J'ai étudié à ce point de vue les composés de l'uranium et du thorium et j'ai fait un grand nombre de mesures de leur activité dans diverses conditions. Il résulte de l'ensemble de ces mesures que la radioactivité de ces substances est bien effectivement une propriété atomique. Elle semble ici liée à la présence des atomes des deux éléments considérés et n'est détruite ni par les changements d'état physique ni par les transformations chimiques. Les combinaisons chimiques et les mélanges contenant de l'uranium ou du thorium sont d'autant plus actifs qu'ils contiennent une plus forte proportion de ces métaux, toute matière inactive agissant à la fois comme matière inerte et matière absorbant le rayonnement.
La radioactivité atomique est-elle un phénomène général?—Comme il a été dit plus haut, j'ai cherché si d'autres substances que les composés d'uranium et de thorium étaient radioactives. J'ai entrepris cette recherche dans l'idée qu'il était fort peu probable que la radioactivité, considérée comme propriété atomique, appartînt à une certaine espèce de matière, à l'exclusion de toute autre. Les mesures que j'ai faites me permettent de dire que pour les éléments chimiques actuellement considérés comme tels, y compris les plus rares et les plus hypothétiques, les composés étudiés par moi ont été toujours au moins 100 fois moins actifs dans mon appareil que l'uranium métallique. Dans le cas des éléments répandus, j'ai étudié plusieurs composés; dans le cas des corps rares, j'ai étudié les composés que j'ai pu me procurer.
Voici la liste des substances qui ont fait partie de mon étude sous forme d'élément ou de combinaison:
1º Tous les métaux ou métalloïdes que l'on trouve facilement et quelques-uns, plus rares, produits purs, provenant de la collection de M. Etard, à l'École de Physique et de Chimie industrielles de la Ville de Paris;
2º Les corps rares suivants: gallium, germanium, néodyme, praséodyme, niobium, scandium, gadolinium, erbium, samarium et rubidium (échantillons prêtés par M. Demarçay); yttrium, ytterbium avec nouvel erbium (échantillons prêtés par M. Urbain[22]);
3º Un grand nombre de roches et de minéraux.
Dans les limites de sensibilité de mon appareil je n'ai pas trouvé de substance simple autre que l'uranium et le thorium, qui soit douée de radioactivité atomique. Il convient toutefois de dire quelques mots sur ce qui est relatif au phosphore. Le phosphore blanc humide, placé entre les plateaux du condensateur, rend conducteur l'air entre les plateaux[23]. Toutefois, je ne considère pas ce corps comme radioactif à la façon de l'uranium et du thorium. Le phosphore, en effet, dans ces conditions, s'oxyde et émet des rayons lumineux, tandis que les composés d'uranium et de thorium sont radioactifs sans éprouver aucune modification chimique appréciable par les moyens connus. De plus, le phosphore n'est actif ni à l'état de phosphore rouge, ni à l'état de combinaison.
Dans un travail récent, M. Bloch vient de montrer que le phosphore, en s'oxydant en présence de l'air, donne naissance à des ions très peu mobiles qui rendent l'air conducteur et provoquent la condensation de la vapeur d'eau[24].
Certains travaux récents conduiraient à admettre que la radioactivité appartient à toutes les substances à un degré extrêmement faible[25]. L'identité de ces phénomènes très faibles avec les phénomènes de la radioactivité atomique ne peut encore être considérée comme établie.
L'uranium et le thorium sont les deux éléments qui possèdent les plus forts poids atomiques (240 et 232); ils se rencontrent fréquemment dans les mêmes minéraux.
Minéraux radioactifs.—J'ai examiné dans mon appareil plusieurs minéraux[26]; certains d'entre eux se sont montrés actifs, entre autres la pechblende, la chalcolite, l'autunite, la monazite, la thorite, l'orangite, la fergusonite, la clévéite, etc. Voici un Tableau qui donne en ampères l'intensité i du courant obtenu avec l'uranium métallique et avec divers minéraux.
| i × 1011. | ||
| Uranium | 2,3 | |
| Pechblende de Johanngeorgenstadt | 8,3 | |
| » de Joachimsthal | 7,0 | |
| » de Pzibran | 6,5 | |
| » de Cornwallis | 1,6 | |
| Clévéite | 1,4 | |
| Chalcolite | 5,2 | |
| Autunite | 2,7 | |
| Thorites diverses | 0,1 | |
| 0,3 | ||
| 0,7 | ||
| 1,3 | ||
| 1,4 | ||
| Orangite | 2,0 | |
| Monazite | 0,5 | |
| Xenotime | 0,03 | |
| Aeschynite | 0,7 | |
| Fergusonite, 2 échantillons | 0,4 | |
| 0,1 | ||
| Samarskite | 1,1 | |
| Niobite, 2 échantillons | 0,1 | |
| 0,3 | ||
| Tantalite | 0,02 | |
| Carnotite[27] | 6,2 | |
Le courant obtenu avec l'orangite (minerai d'oxyde de thorium) variait beaucoup avec l'épaisseur de la couche employée. En augmentant cette épaisseur depuis 0mm,25 à 6mm, on faisait croître le courant de 1,8 à 2,3.
Tous les minéraux qui se montrent radioactifs contiennent de l'uranium ou du thorium; leur activité n'a donc rien d'étonnant, mais l'intensité du phénomène pour certains minéraux est inattendue. Ainsi, on trouve des pechblendes (minerais d'oxyde d'urane) qui sont 4 fois plus actives que l'uranium métallique. La chalcolite (phosphate de cuivre et d'urane cristallisé) est 2 fois plus active que l'uranium. L'autunite (phosphate d'urane et de chaux) est aussi active que l'uranium. Ces faits étaient en désaccord avec les considérations précédentes, d'après lesquelles aucun minéral n'aurait dû se montrer plus actif que l'uranium ou le thorium.
Pour éclaircir ce point, j'ai préparé de la chalcolite artificielle par le procédé de Debray, en partant de produits purs. Ce procédé consiste à mélanger une dissolution d'azotate d'uranyle avec une dissolution de phosphate de cuivre dans l'acide phosphorique, et à chauffer vers 50° ou 60°. Au bout de quelque temps, des cristaux de chalcolite se forment dans la liqueur[28]. La chalcolite ainsi obtenue possède une activité tout à fait normale, étant donnée sa composition; elle est deux fois et demie moins active que l'uranium.
Il devenait dès lors très probable que si la pechblende, la chalcolite, l'autunite ont une activité si forte, c'est que ces substances renferment en petite quantité une matière fortement radioactive, différente de l'uranium, du thorium et des corps simples actuellement connus. J'ai pensé que, s'il en était effectivement ainsi, je pouvais espérer extraire cette substance du minerai par les procédés ordinaires de l'analyse chimique.
CHAPITRE II.
~~~~
LES NOUVELLES SUBSTANCES RADIOACTIVES.
Polonium, radium, actinium.—L'analyse de la pechblende, avec le concours de la méthode qui vient d'être exposée, nous a conduits à établir l'existence, dans ce minéral, de deux substances fortement radioactives, chimiquement différentes: le polonium, trouvé par nous, et le radium, que nous avons découvert en collaboration avec M. Bémont[29].
Le polonium est une substance voisine du bismuth au point de vue analytique et l'accompagnant dans les séparations. On obtient du bismuth de plus en plus riche en polonium par l'un des procédés de fractionnement suivants:
1º Sublimation des sulfures dans le vide; le sulfure actif est beaucoup plus volatil que le sulfure de bismuth.
2º Précipitation des solutions azotiques par l'eau; le sous-nitrate précipité est beaucoup plus actif que le sel qui reste dissous.
3º Précipitation par l'hydrogène sulfuré d'une solution chlorhydrique extrêmement acide; les sulfures précipités sont considérablement plus actifs que le sel qui reste dissous.
Le radium est une substance qui accompagne le baryum retiré de la pechblende; il suit le baryum dans ses réactions et s'en sépare par différence de solubilité des chlorures dans l'eau, l'eau alcoolisée ou l'eau additionnée d'acide chlorhydrique. Nous effectuons la séparation des chlorures de baryum et de radium, en soumettant leur mélange à une cristallisation fractionnée, le chlorure de radium étant moins soluble que celui de baryum.
Une troisième substance fortement radioactive a été caractérisée dans la pechblende par M. Debierne, qui lui a donné le nom d'actinium[30]. L'actinium accompagne certains corps du groupe du fer contenus dans la pechblende; il semble surtout voisin du thorium dont il n'a pu encore être séparé. L'extraction de l'actinium de la pechblende est une opération très pénible, les séparations étant généralement incomplètes.
Toutes les trois substances radioactives nouvelles se trouvent dans la pechblende en quantité absolument infinitésimale. Pour les obtenir à l'état concentré, nous avons été obligés d'entreprendre le traitement de plusieurs tonnes de résidus de minerai d'urane. Le gros traitement se fait dans une usine; il est suivi de tout un travail de purification et de concentration. Nous arrivons ainsi à extraire de ces milliers de kilogrammes de matière première quelques décigrammes de produits qui sont prodigieusement actifs par rapport au minerai dont ils proviennent. Il est bien évident que l'ensemble de ce travail est long, pénible et coûteux[31].
D'autres substances radioactives nouvelles ont encore été signalées à la suite de notre travail. M. Giesel, d'une part, MM. Hoffmann et Strauss, d'autre part, ont annoncé l'existence probable d'une substance radioactive voisine du plomb par ses propriétés chimiques. On ne possède encore que peu de renseignements sur cette substance[32].
De toutes les substances radioactives nouvelles, le radium est, jusqu'à présent, la seule qui ait été isolée à l'état de sel pur.
M. Demarçay a bien voulu se charger de l'examen des substances radioactives nouvelles, par les procédés rigoureux qu'il emploie dans l'étude des spectres d'étincelle photographiés.
Le concours d'un savant aussi compétent a été pour nous un grand bienfait, et nous lui gardons une reconnaissance profonde d'avoir consenti à faire ce travail. Les résultats de l'analyse spectrale sont venus nous apporter la certitude, alors que nous étions encore dans le doute sur l'interprétation des résultats de nos recherches[33].
Les premiers échantillons de chlorure de baryum radifère médiocrement actif, examinés par Demarçay, lui montrèrent, en même temps que les raies du baryum, une raie nouvelle d'intensité notable et de longueur d'onde λ = 381µµ,47 dans le spectre ultra-violet. Avec des produits plus actifs, préparés ensuite, Demarçay vit la raie 381µµ,47 se renforcer; en même temps d'autres raies nouvelles apparurent, et dans le spectre les raies nouvelles et les raies du baryum avaient des intensités comparables. Une nouvelle concentration a fourni un produit, pour lequel le nouveau spectre domine, et les trois plus fortes raies du baryum, seules visibles, indiquent seulement la présence de ce métal à l'état d'impureté. Ce produit peut être considéré comme du chlorure de radium à peu près pur. Enfin j'ai pu, par une nouvelle purification, obtenir un chlorure extrêmement pur, dans le spectre duquel les deux raies dominantes du baryum sont à peine visibles.
Voici, d'après Demarçay[34], la liste des raies principales du radium pour la portion du spectre comprise entre λ = 500,0 et λ = 350,0 millièmes de micron (µµ). L'intensité de chaque raie est indiquée par un nombre, la plus forte raie étant marquée 16.
| λ. | Intensité. | λ. | Intensité. |
| 482,63 | 10 | 453,35 | 9 |
| 472,69 | 5 | 443,61 | 8 |
| 469,98 | 3 | 434,06 | 12 |
| 469,21 | 7 | 381,47 | 16 |
| 468,30 | 14 | 364,96 | 12 |
| 464,19 | 4 |
Toutes les raies sont nettes et étroites, les trois raies 381,47, 468,30 et 434,06 sont fortes; elles atteignent l'égalité avec les raies les plus intenses actuellement connues. On aperçoit également dans le spectre deux bandes nébuleuses fortes. La première, symétrique, s'étend de 463,10 à 462,19 avec maximum à 462,75. La deuxième, plus forte, est dégradée vers l'ultra-violet; elle commence brusquement à 446,37, passe par un maximum à 445,52; la région du maximum s'étend jusqu'à 445,34, puis une bande nébuleuse, graduellement dégradée, s'étend jusque vers 439.
Dans la partie la moins réfrangible non photographiée du spectre d'étincelle, la seule raie notable est la raie 566,5 (environ), bien plus faible cependant que 482,63.
L'aspect général du spectre est celui des métaux alcalino-terreux; on sait que ces métaux ont des spectres de raies fortes avec quelques bandes nébuleuses.
D'après Demarçay, le radium peut figurer parmi les corps ayant la réaction spectrale la plus sensible. J'ai, d'ailleurs, pu conclure, d'après mon travail de concentration, que, dans le premier échantillon examiné qui montrait nettement la raie 381,47, la proportion de radium devait être très faible (peut-être de 0,02 pour 100). Cependant, il faut une activité 50 fois plus grande que celle de l'uranium métallique pour apercevoir nettement la raie principale du radium dans les spectres photographiés. Avec un électromètre sensible, on peut déceler la radioactivité d'un produit quand elle n'est que 1/100 de celle de l'uranium métallique. On voit que, pour déceler la présence du radium, la radioactivité est un caractère plusieurs milliers de fois plus sensible que la réaction spectrale.
Le bismuth à polonium très actif et le thorium à actinium très actif, examinés par Demarçay, n'ont encore respectivement donné que les raies du bismuth et du thorium.
Dans une publication récente, M. Giesel[35], qui s'est occupé de la préparation du radium, annonce que le bromure de radium donne lieu à une coloration carmin de la flamme. Le spectre de flamme du radium contient deux belles bandes rouges, une raie dans le bleu vert et deux lignes faibles dans le violet.
Extraction des substances radioactives nouvelles.—La première partie de l'opération consiste à extraire des minerais d'urane le baryum radifère, le bismuth polonifère et les terres rares contenant l'actinium. Ces trois premiers produits ayant été obtenus, on cherche, pour chacun d'eux, à isoler la substance radioactive nouvelle. Cette deuxième partie du traitement se fait par une méthode de fractionnement. On sait qu'il est difficile de trouver un moyen de séparation très parfait entre des éléments très voisins; les méthodes de fractionnement sont donc tout indiquées. D'ailleurs, quand un élément se trouve mélangé à un autre à l'état de trace, on ne peut appliquer au mélange une méthode de séparation parfaite, même en admettant que l'on en connaisse une; on risquerait, en effet, de perdre la trace de matière qui aurait pu être séparée dans l'opération.
Je me suis occupée spécialement du travail ayant pour but l'isolement du radium et du polonium. Après un travail de quelques années, je n'ai encore réussi que pour le premier de ces corps.
La pechblende étant un minerai coûteux, nous avons renoncé à en traiter de grandes quantités. En Europe, l'extraction de ce minerai se fait dans la mine de Joachimsthal, en Bohême. Le minerai broyé est grillé avec du carbonate de soude, et la matière résultant de ce traitement est lessivée d'abord à l'eau chaude, puis à l'acide sulfurique étendu. La solution contient l'uranium qui donne à la pechblende sa valeur. Le résidu insoluble est rejeté.
Ce résidu contient des substances radioactives; son activité est 4 fois et demie plus grande que celle de l'uranium métallique. Le gouvernement autrichien, auquel appartient la mine, nous a gracieusement donné une tonne de ce résidu pour nos recherches, et a autorisé la mine à nous fournir plusieurs autres tonnes de cette matière.
Il n'était guère facile de faire le premier traitement du résidu à l'usine par les mêmes procédés qu'au laboratoire. M. Debierne a bien voulu étudier cette question et organiser le traitement dans l'usine. Le point le plus important de la méthode qu'il a indiquée consiste à obtenir la transformation des sulfates en carbonates par l'ébullition de la matière avec une dissolution concentrée de carbonate de soude. Ce procédé permet d'éviter la fusion avec le carbonate de soude.
Le résidu contient principalement des sulfates de plomb et de chaux, de la silice, de l'alumine et de l'oxyde de fer. On y trouve, en outre, en quantité plus ou moins grande, presque tous les métaux (cuivre, bismuth, zinc, cobalt, manganèse, nickel, vanadium, antimoine, thallium, terres rares, niobium, tantale, arsenic, baryum, etc.). Le radium se trouve, dans ce mélange, à l'état de sulfate et en constitue le sulfate le moins soluble. Pour le mettre en dissolution, il faut éliminer autant que possible l'acide sulfurique. Pour cela, on commence par traiter le résidu par une solution concentrée et bouillante de soude ordinaire. L'acide sulfurique combiné au plomb, à l'alumine, à la chaux, passe, en grande partie, en dissolution à l'état de sulfate de soude que l'on enlève par des lavages à l'eau. La dissolution alcaline enlève en même temps du plomb, de la silice, de l'alumine. La portion insoluble lavée à l'eau est attaquée par l'acide chlorhydrique ordinaire. Cette opération désagrège complètement la matière et en dissout une grande partie. De cette dissolution on peut retirer le polonium et l'actinium: le premier est précipité par l'hydrogène sulfuré, le second se trouve dans les hydrates précipités par l'ammoniaque dans la dissolution séparée des sulfures et peroxydée. Quant au radium, il reste dans la portion insoluble. Cette portion est lavée à l'eau, puis traitée par une dissolution concentrée et bouillante de carbonate de soude. S'il ne restait plus que peu de sulfates non attaqués, cette opération a pour effet de transformer complètement les sulfates de baryum et de radium en carbonates. On lave alors la matière très complètement à l'eau, puis on l'attaque par l'acide chlorhydrique étendu exempt d'acide sulfurique. La dissolution contient le radium, ainsi que du polonium et de l'actinium. On la filtre et on la précipite par l'acide sulfurique. On obtient ainsi des sulfates bruts de baryum radifère contenant aussi de la chaux, du plomb, du fer et ayant aussi entraîné un peu d'actinium. La dissolution contient encore un peu d'actinium et de polonium qui peuvent en être retirés comme de la première dissolution chlorhydrique.
On retire d'une tonne de résidu 10kg à 20kg de sulfates bruts, dont l'activité est de 30 à 60 fois plus grande que celle de l'uranium métallique. On procède à leur purification. Pour cela, on les fait bouillir avec du carbonate de soude et on les transforme en chlorures. La dissolution est traitée par l'hydrogène sulfuré, ce qui donne une petite quantité de sulfures actifs contenant du polonium. On filtre la dissolution, on la peroxyde par l'action du chlore et on la précipite par de l'ammoniaque pure.
Les oxydes et hydrates précipités sont très actifs, et l'activité est due à l'actinium. La dissolution filtrée est précipitée par le carbonate de soude. Les carbonates alcalino-terreux précipités sont lavés et transformés en chlorures.
Ces chlorures sont évaporés à sec et lavés avec de l'acide chlorhydrique concentré pur. Le chlorure de calcium se dissout presque entièrement, alors que le chlorure de baryum radifère reste insoluble. On obtient ainsi, par tonne de matière première, 8kg environ de chlorure de baryum radifère, dont l'activité est environ 60 fois plus grande que celle de l'uranium métallique. Ce chlorure est prêt pour le fractionnement.
Ces sulfures contiennent principalement du bismuth, un peu de cuivre et de plomb; ce dernier métal ne s'y trouve pas en forte proportion, parce qu'il a été en grande partie enlevé par la dissolution sodique, et parce que son chlorure est peu soluble. L'antimoine et l'arsenic ne se trouvent dans les oxydes qu'en quantité minime, leurs oxydes ayant été dissous par la soude. Pour avoir de suite des sulfures très actifs, on employait le procédé suivant: les dissolutions chlorhydriques très acides étaient précipitées par l'hydrogène sulfuré: les sulfures qui se précipitent dans ces conditions sont très actifs, on les emploie pour la préparation du polonium; dans la dissolution il reste des substances dont la précipitation est incomplète en présence d'un excès d'acide chlorhydrique (bismuth, plomb, antimoine). Pour achever la précipitation, on étend la dissolution d'eau, on la traite à nouveau par l'hydrogène sulfuré et l'on obtient une seconde portion de sulfures beaucoup moins actifs que les premiers, et qui, généralement, ont été rejetés. Pour la purification ultérieure des sulfures, on les lave au sulfure d'ammonium, ce qui enlève les traces restantes d'antimoine et d'arsenic. Puis on les lave à l'eau additionnée d'azotate d'ammonium et on les traite par l'acide azotique étendu.
La dissolution n'est jamais complète; on obtient toujours un résidu insoluble plus ou moins important que l'on traite à nouveau si on le juge utile. La dissolution est réduite à un petit volume et précipitée soit par l'ammoniaque, soit par beaucoup d'eau. Dans les deux cas le plomb et le cuivre restent en dissolution; dans le second cas un peu de bismuth à peine actif reste dissous également.
Le précipité d'oxydes ou de sous-azotates est soumis à un fractionnement de la manière suivante: on dissout le précipité dans l'acide azotique, on ajoute de l'eau à la dissolution, jusqu'à formation d'une quantité suffisante de précipité; pour cette opération il faut tenir compte de ce que le précipité ne se forme, quelquefois, qu'au bout d'un certain temps. On sépare le précipité du liquide surnageant, on le redissout dans l'acide azotique; sur les deux portions liquides ainsi obtenues on refait une précipitation par l'eau, et ainsi de suite. On réunit les diverses portions en se basant sur leur activité, et l'on tâche de pousser la concentration aussi loin que possible. On obtient ainsi une très petite quantité de matière dont l'activité est énorme, mais qui, néanmoins, n'a encore donné au spectroscope que les raies du bismuth.
On a malheureusement peu de chances d'aboutir à l'isolement du polonium par cette voie. La méthode de fractionnement qui vient d'être décrite présente de grandes difficultés, et il en est de même pour d'autres procédés de fractionnement par voie humide. Quel que soit le procédé employé, il se forme avec la plus grande facilité des composés absolument insolubles dans les acides étendus ou concentrés. Ces composés ne peuvent être redissous qu'en les ramenant préalablement à l'état métallique, par la fusion avec le cyanure de potassium, par exemple.
Étant donné le nombre considérable des opérations à effectuer, cette circonstance constitue une difficulté énorme pour le progrès du fractionnement. Cet inconvénient est d'autant plus grave que le polonium est une substance qui, une fois retirée de la pechblende, diminue d'activité.
Cette baisse d'activité est d'ailleurs lente; c'est ainsi qu'un échantillon de nitrate de bismuth à polonium a perdu la moitié de son activité en onze mois.
Aucune difficulté analogue ne se présente pour le radium. La radioactivité reste un guide fidèle pour la concentration: cette concentration elle-même ne présente aucune difficulté, et les progrès du travail ont pu, depuis le début, être constamment contrôlés par l'analyse spectrale.
Quand les phénomènes de la radioactivité induite, dont il sera question plus loin, ont été connus, il a paru naturel d'admettre que le polonium, qui ne donne que les raies du bismuth et dont l'activité diminue avec le temps, n'est pas un élément nouveau, mais du bismuth activé par le voisinage du radium dans la pechblende. Je ne suis pas convaincue que cette manière de voir soit exacte. Au cours de mon travail prolongé sur le polonium, j'ai constaté des effets chimiques que je n'ai jamais observés ni avec le bismuth ordinaire, ni avec le bismuth activé par le radium. Ces effets chimiques sont, en premier lieu, la formation extrêmement facile des composés insolubles dont j'ai parlé plus haut (spécialement sous-nitrates), en deuxième lieu, la couleur et l'aspect des précipités obtenus en ajoutant de l'eau à la solution azotique du bismuth polonifère. Ces précipités sont parfois blancs, mais plus généralement d'un jaune plus ou moins vif, allant au rouge foncé.
L'absence de raies, autres que celles du bismuth, ne prouve pas péremptoirement que la substance ne contient que du bismuth, car il existe des corps dont la réaction spectrale est peu sensible.
Il serait nécessaire de préparer une petite quantité de bismuth polonifère à l'état de concentration aussi avancé que possible, et d'en faire l'étude chimique, en premier lieu, la détermination du poids atomique du métal. Cette recherche n'a encore pu être faite à cause des difficultés de travail chimique signalées plus haut.
S'il était démontré que le polonium est un élément nouveau, il n'en serait pas moins vrai que cet élément ne peut exister indéfiniment à l'état fortement radioactif, tout au moins quand il est retiré du minerai. On peut alors envisager la question de deux manières différentes: 1º ou bien toute l'activité du polonium est de la radioactivité induite par le voisinage de substances radioactives par elles-mêmes; le polonium aurait alors la faculté de s'activer atomiquement d'une façon durable, faculté qui ne semble pas appartenir à une substance quelconque; 2º ou bien l'activité du polonium est une activité propre qui se détruit spontanément dans certaines conditions et peut persister dans certaines autres conditions qui se trouvent réalisées dans le minerai. Le phénomène de l'activation atomique au contact est encore si mal connu, que l'on manque de base pour se former une opinion cohérente sur ce qui touche à cette question.
Tout récemment a paru un travail de M. Marckwald, sur le polonium[36]. M. Marckwald plonge une baguette de bismuth pur dans une solution chlorhydrique du bismuth extrait du résidu du traitement de la pechblende. Au bout de quelque temps la baguette se recouvre d'un dépôt très actif, et la solution ne contient plus que du bismuth inactif. M. Marckwald obtient aussi un dépôt très actif en ajoutant du chlorure d'étain à une solution chlorhydrique de bismuth radioactif. M. Marckwald conclut de là que l'élément actif est analogue au tellure et lui donne le nom de radiotellure. La matière active de M. Marckwald semble identique au polonium, par sa provenance et par les rayons très absorbables qu'elle émet. Le choix d'un nom nouveau pour cette matière est certainement inutile dans l'état actuel de la question.
Préparation du chlorure de radium pur.—Le procédé que j'ai adopté pour extraire le chlorure de radium pur du chlorure de baryum radifère consiste à soumettre le mélange des chlorures à une cristallisation fractionnée dans l'eau pure d'abord, dans l'eau additionnée d'acide chlorhydrique pur ensuite. On utilise ainsi la différence des solubilités des deux chlorures, celui de radium étant moins soluble que celui de baryum.
Au début du fractionnement on emploie l'eau pure distillée. On dissout le chlorure et l'on amène la dissolution à être saturée à la température de l'ébullition, puis on laisse cristalliser par refroidissement dans une capsule couverte. Il se forme alors au fond de beaux cristaux adhérents, et la dissolution saturée, surnageante, peut être facilement décantée. Si l'on évapore à sec un échantillon de cette dissolution, on trouve que le chlorure obtenu est environ cinq fois moins actif que celui qui a cristallisé. On a ainsi partagé le chlorure en deux portions: A et B, la portion A étant beaucoup plus active que la portion B. On recommence sur chacun des chlorures A et B la même opération, et l'on obtient, avec chacun d'eux, deux portions nouvelles. Quand la cristallisation est terminée, on réunit ensemble la fraction la moins active du chlorure A et la fraction la plus active du chlorure B, ces deux matières ayant sensiblement la même activité. On se trouve alors avoir trois portions que l'on soumet à nouveau au même traitement.
On ne laisse pas augmenter constamment le nombre des portions. A mesure que ce nombre augmente, l'activité de la portion la plus soluble va en diminuant. Quand cette portion n'a plus qu'une activité insignifiante, on l'élimine du fractionnement. Quand on a obtenu le nombre de portions que l'on désire, on cesse aussi de fractionner la portion la moins soluble (la plus riche en radium), et on l'élimine du fractionnement.
On opère avec un nombre constant de portions. Après chaque série d'opérations, la solution saturée provenant d'une portion est versée sur les cristaux provenant de la portion suivante; mais si, après l'une des séries, on a éliminé la fraction la plus soluble, après la série suivante on fera, au contraire, une nouvelle portion avec la fraction la plus soluble, et l'on éliminera les cristaux qui constituent la portion la plus active. Par la succession alternative de ces deux modes opératoires on obtient un mécanisme de fractionnement très régulier, dans lequel le nombre des portions et l'activité de chacune d'elles restent constants, chaque portion étant environ cinq fois plus active que la suivante, et dans lequel on élimine d'un côté (à la queue) un produit à peu près inactif, tandis que l'on recueille de l'autre côté (à la tête) un chlorure enrichi en radium. La quantité de matière contenue dans les portions va, d'ailleurs, nécessairement en diminuant, et les portions diverses contiennent d'autant moins de matière qu'elles sont plus actives.
On opérait au début avec six portions, et l'activité du chlorure éliminé à la queue n'était que 0,1 de celle de l'uranium.
Quand on a ainsi éliminé en grande partie la matière inactive et que les portions sont devenues petites, on n'a plus intérêt à éliminer à une activité aussi faible; on supprime alors une portion à la queue du fractionnement et l'on ajoute à la tête une portion formée avec le chlorure actif précédemment recueilli. On recueillera donc maintenant un chlorure plus riche en radium que précédemment. On continue à appliquer ce système jusqu'à ce que les cristaux de tête représentent du chlorure de radium pur. Si le fractionnement a été fait d'une façon très complète, il reste à peine de très petites quantités de tous les produits intermédiaires.
Quand le fractionnement est avancé et que la quantité de matière est devenue faible dans chaque portion, la séparation par cristallisation est moins efficace, le refroidissement étant trop rapide et le volume de solution à décanter trop petit. On a alors intérêt à additionner l'eau d'une proportion déterminée d'acide chlorhydrique; cette proportion devra aller en croissant à mesure que le fractionnement avance.
L'avantage de cette addition consiste à augmenter la quantité de la dissolution, la solubilité des chlorures étant moindre dans l'eau chlorhydrique que dans l'eau pure. De plus, le fractionnement est alors très efficace; la différence entre les deux fractions provenant d'un même produit est considérable; en employant de l'eau avec beaucoup d'acide, on a d'excellentes séparations, et l'on peut opérer avec trois ou quatre portions seulement. On a tout avantage à employer ce procédé aussitôt que la quantité de matière est devenue assez faible pour que l'on puisse opérer ainsi sans inconvénients.
Les cristaux, qui se déposent en solution très acide, ont la forme d'aiguilles très allongées, qui ont absolument le même aspect pour le chlorure de baryum et pour le chlorure de radium. Les uns et les autres sont biréfringents. Les cristaux de chlorure de baryum radifère se déposent incolores, mais, quand la proportion de radium devient suffisante, ils prennent au bout de quelques heures une coloration jaune, allant à l'orangé, quelquefois une belle coloration rose. Cette coloration disparaît par la dissolution. Les cristaux de chlorure de radium pur ne se colorent pas, ou tout au moins pas aussi rapidement, de sorte que la coloration paraît due à la présence simultanée du baryum et du radium. Le maximum de coloration est obtenu pour une certaine concentration en radium, et l'on peut, en se basant sur cette propriété, contrôler les progrès du fractionnement. Tant que la portion la plus active se colore, elle contient une quantité notable de baryum; quand elle ne se colore plus, et que les portions suivantes se colorent, c'est que la première est sensiblement du chlorure de radium pur.
J'ai remarqué parfois la formation d'un dépôt composé de cristaux dont une partie restait incolore, alors que l'autre partie se colorait. Il semblait possible de séparer les cristaux incolores par triage, ce qui n'a pas été essayé.
A la fin du fractionnement, le rapport des activités des portions successives n'est ni le même, ni aussi régulier qu'au début; toutefois il ne se produit aucun trouble sérieux dans la marche du fractionnement.
La précipitation fractionnée d'une solution aqueuse de chlorure de baryum radifère par l'alcool conduit aussi à l'isolement du chlorure de radium qui se précipite en premier. Cette méthode que j'employais au début a été ensuite abandonnée pour celle qui vient d'être exposée et qui offre plus de régularité. Cependant, j'ai encore quelquefois employé la précipitation par l'alcool pour purifier le chlorure de radium qui contient une petite quantité de chlorure de baryum. Ce dernier reste dans la dissolution alcoolique légèrement aqueuse et peut ainsi être enlevé.
M. Giesel, qui, dès la publication de nos premières recherches, s'est occupé de la préparation des corps radioactifs, recommande la séparation du baryum et du radium par la cristallisation fractionnée dans l'eau du mélange des bromures. J'ai pu constater que ce procédé est en effet très avantageux, surtout au début du fractionnement.
Quel que soit le procédé de fractionnement dont on se sert, il est utile de le contrôler par des mesures d'activité.
Il est nécessaire de remarquer qu'un composé de radium qui était dissous, et que l'on vient de ramener à l'état solide, soit par précipitation, soit par cristallisation, possède au début une activité d'autant moins grande qu'il est resté plus longtemps en dissolution. L'activité augmente ensuite pendant plusieurs mois pour atteindre une certaine limite, toujours la même. L'activité finale est cinq ou six fois plus élevée que l'activité initiale. Ces variations, sur lesquelles je reviendrai plus loin, doivent être prises en considération pour la mesure de l'activité. Bien que l'activité finale soit mieux définie, il est plus pratique, au cours d'un traitement chimique, de mesurer l'activité initiale du produit solide.
L'activité des substances fortement radioactives est d'un tout autre ordre de grandeur que celle du minerai dont elles proviennent (elle est 106 fois plus grande). Quand on mesure cette radioactivité par la méthode qui a été exposée au début de ce travail (appareil fig. 1), on ne peut pas augmenter, au delà d'une certaine limite, la charge que l'on met dans le plateau du quartz. Cette charge, dans nos expériences, était de 4000g au maximum, correspondant à une quantité d'électricité dégagée égale à 25 unités électrostatiques. Nous pouvons mesurer des activités qui varient, dans le rapport de 1 à 4000, en employant toujours la même surface pour la substance active. Pour étendre les limites des mesures, nous faisons varier cette surface dans un rapport connu. La substance active occupe alors sur le plateau B une zone circulaire centrale de rayon connu. L'activité n'étant pas, dans ces conditions, exactement proportionnelle à la surface, on détermine expérimentalement des coefficients qui permettent de comparer les activités à surface active inégale.
Quand cette ressource elle-même est épuisée, on est obligé d'avoir recours à l'emploi d'écrans absorbants et à d'autres procédés équivalents sur lesquels je n'insisterai pas ici. Tous ces procédés, plus ou moins imparfaits, suffisent cependant pour guider les recherches.
Nous avons aussi mesuré le courant qui traverse le condensateur quand il est mis en circuit avec une batterie de petits accumulateurs et un galvanomètre sensible. La nécessité de vérifier fréquemment la sensibilité du galvanomètre nous a empêchés d'employer cette méthode pour les mesures courantes.
Détermination du poids atomique du radium[37].—Au cours de mon travail, j'ai, à plusieurs reprises, déterminé le poids atomique du métal contenu dans des échantillons de chlorure de baryum radifère. Chaque fois qu'à la suite d'un nouveau traitement j'avais une nouvelle provision de chlorure de baryum radifère à traiter, je poussais la concentration aussi loin que possible, de façon à obtenir de 0g,1 à 0g,5 de matière contenant presque toute l'activité du mélange. De cette petite quantité de matière je précipitais par l'alcool ou l'acide chlorhydrique quelques milligrammes de chlorure qui étaient destinés à l'analyse spectrale.
Grâce à son excellente méthode, Demarçay n'avait besoin que de cette quantité minime de matière pour obtenir la photographie du spectre de l'étincelle. Sur le produit qui me restait je faisais une détermination de poids atomique.
J'ai employé la méthode classique qui consiste à doser, à l'état de chlorure d'argent, le chlore contenu dans un poids connu de chlorure anhydre. Comme expérience de contrôle, j'ai déterminé le poids atomique du baryum par la même méthode, dans les mêmes conditions et avec la même quantité de matière, 0g,5 d'abord, 0g,1 seulement ensuite. Les nombres trouvés étaient toujours compris entre 137 et 138. J'ai vu ainsi que cette méthode donne des résultats satisfaisants, même avec une aussi faible quantité de matière.
Les deux premières déterminations ont été faites avec des chlorures, dont l'un était 230 fois et l'autre 600 fois plus actif que l'uranium. Ces deux expériences ont donné, à la précision des mesures près, le même nombre que l'expérience faite avec le chlorure de baryum pur. On ne pouvait donc espérer de trouver une différence qu'en employant un produit beaucoup plus actif. L'expérience suivante a été faite avec un chlorure dont l'activité était environ 3500 fois plus grande que celle de l'uranium; cette expérience permit, pour la première fois, d'apercevoir une différence petite, mais certaine; je trouvais, pour le poids atomique moyen du métal contenu dans ce chlorure, le nombre 140, qui indiquait que le poids atomique du radium devait être plus élevé que celui du baryum. En employant des produits de plus en plus actifs et présentant le spectre du radium avec une intensité croissante, je constatais que les nombres obtenus allaient aussi en croissant, comme on peut le voir dans le Tableau suivant (A indique l'activité du chlorure, celle de l'uranium étant prise comme unité; M le poids atomique trouvé):
| A. | M. | |||
| 3500 | 140 | le spectre du radium est très faible | ||
| 4700 | 141 | |||
| 7500 | 145,8 | le spectre du radium est fort, mais celui du baryum domine de beaucoup | ||
| Ordre de grandeur, 106. | 173,8 | les deux spectres ont une importance à peu près égale | ||
| 225 | le baryum n'est présent qu'à l'état de trace. |
Les nombres de la colonne A ne doivent être considérés que comme une indication grossière. L'appréciation de l'activité des corps fortement radioactifs est, en effet, difficile, pour diverses raisons dont il sera question plus loin.
A la suite des traitements décrits plus haut, j'ai obtenu, en mars 1902, 0g,12 d'un chlorure de radium, dont Demarçay a bien voulu faire l'analyse spectrale. Ce chlorure de radium, d'après l'opinion de Demarçay, était sensiblement pur; cependant son spectre présentait encore les trois raies principales du baryum avec une intensité notable.
J'ai fait avec ce chlorure quatre déterminations successives dont voici les résultats:
| Chlorure de radium anhydre. | Chlorure d'argent. | M. | |
| I | 0,1150 | 0,1130 | 220,7 |
| II | 0,1148 | 0,1119 | 223,0 |
| III | 0,11135 | 0,1086 | 222,8 |
| IV | 0,10925 | 0,10645 | 223,1 |
J'ai entrepris alors une nouvelle purification de ce chlorure, et je suis arrivée à obtenir une matière beaucoup plus pure encore, dans le spectre de laquelle les deux raies les plus fortes du baryum sont très faibles. Étant donnée la sensibilité de la réaction spectrale du baryum, Demarçay estime que ce chlorure purifié ne contient que «des traces minimes de baryum incapables d'influencer d'une façon appréciable le poids atomique». J'ai fait trois déterminations avec ce chlorure de radium parfaitement pur. Voici les résultats:
| Chlorure de radium anhydre. | Chlorure d'argent. | M. | |
| I | 0,09192 | 0,08890 | 225,3 |
| II | 0,08936 | 0,08627 | 225,8 |
| III | 0,08839 | 0,08589 | 224,0 |
Ces nombres donnent une moyenne de 225. Ils ont été calculés, de même que les précédents, en considérant le radium comme un élément bivalent, dont le chlorure a la formule RaCl2, et en adoptant pour l'argent et le chlore les nombres Ag = 107,8; Cl = 35,4.
Il résulte de ces expériences que le poids atomique du radium est Ra=225. Je considère ce nombre comme exact à une unité près.
Les pesées étaient faites avec une balance apériodique Curie, parfaitement réglée, précise au vingtième de milligramme. Cette balance, à lecture directe, permet de faire des pesées très rapides, ce qui est une condition essentielle pour la pesée des chlorures anhydres de radium et de baryum, qui absorbent lentement de l'eau, malgré la présence de corps desséchants dans la balance. Les matières à peser étaient placées dans un creuset de platine; ce creuset était en usage depuis longtemps, et j'ai vérifié que son poids ne variait pas d'un dixième de milligramme au cours d'une opération.
Le chlorure hydraté obtenu par cristallisation était introduit dans le creuset et chauffé à l'étuve pour être transformé en chlorure anhydre. L'expérience montre que, lorsque le chlorure a été maintenu quelques heures à 100°, son poids ne varie plus, même lorsqu'on fait monter la température à 200° et qu'on l'y maintient pendant quelques heures. Le chlorure anhydre ainsi obtenu constitue donc un corps parfaitement défini.
Voici une série de mesures relatives à ce sujet: le chlorure (1dg) est séché à l'étuve à 55° et placé dans un exsiccateur sur de l'acide phosphorique anhydre; il perd alors du poids très lentement, ce qui prouve qu'il contient encore de l'eau; pendant 12 heures, la perte a été de 3mg. On reporte le chlorure dans l'étuve et on laisse la température monter à 100°. Pendant cette opération, le chlorure perd 6mg,3. Laissé dans l'étuve pendant 3 heures 15 minutes, il perd encore 2mg,5. On maintient la température pendant 45 minutes entre 100° et 120°, ce qui entraîne une perte de poids de 0mg,1. Laissé ensuite 30 minutes à 125°, le chlorure ne perd rien. Maintenu ensuite pendant 30 minutes à 150°, il perd 0mg,1. Enfin, chauffé pendant 4 heures à 200°, il éprouve une perte de poids de 0mg,15. Pendant toutes ces opérations, le creuset a varié de 0mg,05.
Après chaque détermination de poids atomique, le radium était ramené à l'état de chlorure de la manière suivante: la liqueur contenant après le dosage l'azotate de radium et l'azotate d'argent en excès était additionnée d'acide chlorhydrique pur, on séparait le chlorure d'argent par filtration; la liqueur était évaporée à sec plusieurs fois avec un excès d'acide chlorhydrique pur. L'expérience montre qu'on peut ainsi éliminer complètement l'acide azotique.
Le chlorure d'argent du dosage était toujours radioactif et lumineux. Je me suis assurée qu'il n'avait pas entraîné de quantité pondérable de radium, en déterminant la quantité d'argent qui y était contenue. A cet effet, le chlorure d'argent fondu contenu dans le creuset était réduit par l'hydrogène résultant de la décomposition de l'acide chlorhydrique étendu par le zinc; après lavage, le creuset était pesé avec l'argent métallique qui y était contenu.
J'ai constaté également, dans une expérience, que le poids du chlorure de radium régénéré était retrouvé le même qu'avant l'opération. Dans d'autres expériences, je n'attendais pas, pour commencer une nouvelle opération, que toutes les eaux de lavage fussent évaporées.
Ces vérifications ne comportent pas la même précision que les expériences directes; elles ont permis toutefois de s'assurer qu'aucune erreur notable n'a été commise.
D'après ses propriétés chimiques, le radium est un élément de la série des alcalino-terreux. Il est dans cette série l'homologue supérieur du baryum.
D'après son poids atomique, le radium vient se placer également, dans le Tableau de Mendeleeff, à la suite du baryum dans la colonne des métaux alcalino-terreux et sur la rangée qui contient déjà l'uranium et le thorium.
Les sels de radium sont tous lumineux dans l'obscurité.
Par leurs propriétés chimiques, les sels de radium sont absolument analogues aux sels correspondants de baryum. Cependant le chlorure de radium est moins soluble que celui de baryum; la solubilité des azotates dans l'eau semble être sensiblement la même.
Les sels de radium sont le siège d'un dégagement de chaleur spontané et continu.
Le chlorure de radium pur est paramagnétique. Son coefficient d'aimantation spécifique K (rapport du moment magnétique de l'unité de masse à l'intensité du champ) a été mesuré par MM. P. Curie et C. Chéneveau au moyen d'un appareil établi par ces deux physiciens[38]. Ce coefficient a été mesuré par comparaison avec celui de l'eau et corrigé de l'action du magnétisme de l'air. On a trouvé ainsi
K = 1,05 × 10-6.
Le chlorure de baryum pur est diamagnétique, son coefficient d'aimantation spécifique est
K = - 0,40 × 10-6.
On trouve d'ailleurs, conformément aux résultats précédents, qu'un chlorure de baryum radifère contenant environ 17 pour 100 de chlorure de radium est diamagnétique et possède un coefficient spécifique
K = - 0,20 × 10-6[39].
50kg de chlorure de baryum du commerce ont été dissous dans l'eau; la dissolution a été précipitée par de l'acide chlorhydrique exempt d'acide sulfurique, ce qui a fourni 20kg de chlorure précipité. Celui-ci a été dissous dans l'eau et précipité partiellement par l'acide chlorhydrique, ce qui a donné 8kg,5 de chlorure précipité. Ce chlorure a été soumis à la méthode de fractionnement employée pour le chlorure de baryum radifère, et l'on a éliminé à la tête du fractionnement 10g de chlorure correspondant à la portion la moins soluble. Ce chlorure ne montrait aucune radioactivité dans notre appareil de mesures; il ne contenait donc pas de radium; ce corps est, par suite, absent des minerais qui fournissent le baryum.
CHAPITRE III.
~~~~
RAYONNEMENT DES NOUVELLES SUBSTANCES RADIOACTIVES.
Les deux premières ont été employées dès le début pour l'étude des rayons uraniques; la méthode fluoroscopique ne peut s'appliquer qu'aux substances nouvelles, fortement radioactives, car les substances faiblement radioactives telles que l'uranium et le thorium ne produisent pas de fluorescence appréciable. La méthode électrique est la seule qui comporte des mesures d'intensité précises; les deux autres sont surtout propres à donner à ce point de vue des résultats qualitatifs et ne peuvent fournir que des mesures d'intensité grossières. Les résultats obtenus avec les trois méthodes considérées ne sont jamais que très grossièrement comparables entre eux et peuvent ne pas être comparables du tout. La plaque sensible, le gaz qui s'ionise, l'écran fluorescent sont autant de récepteurs auxquels on demande d'absorber l'énergie du rayonnement et de la transformer en un autre mode d'énergie: énergie chimique, énergie ionique ou énergie lumineuse. Chaque récepteur absorbe une fraction du rayonnement qui dépend essentiellement de sa nature. On verra d'ailleurs plus loin que le rayonnement est complexe; les portions du rayonnement absorbées par les différents récepteurs peuvent différer entre elles quantitativement et qualitativement. Enfin, il n'est ni évident, ni même probable, que l'énergie absorbée soit entièrement transformée par le récepteur en la forme que nous désirons observer; une partie de cette énergie peut se trouver transformée en chaleur, en émission de rayonnements secondaires qui, suivant le cas, seront ou ne seront pas utilisés pour la production du phénomène observé, en action chimique différente de celle que l'on observe, etc., et, là encore, l'effet utile du récepteur, pour le but que nous nous proposons, dépend essentiellement de la nature de ce récepteur.
Comparons deux échantillons radioactifs dont l'un contient du radium et l'autre du polonium, et qui sont également actifs dans l'appareil à plateaux de la figure 1. Si l'on recouvre chacun d'eux d'une feuille mince d'aluminium, le second paraîtra considérablement moins actif que le premier, et il en sera de même si on les place sous le même écran fluorescent, quand ce dernier est assez épais, ou qu'il est placé à une certaine distance des deux substances radioactives.
Énergie du rayonnement.—Quelle que soit la méthode de recherches employée, on trouve toujours que l'énergie du rayonnement des substances radioactives nouvelles est considérablement plus grande que celle de l'uranium et du thorium. C'est ainsi que, à petite distance, une plaque photographique est impressionnée, pour ainsi dire, instantanément, alors qu'une pose de 24 heures est nécessaire quand on opère avec l'uranium et le thorium. Un écran fluorescent est vivement illuminé au contact des substances radioactives nouvelles, alors qu'aucune trace de luminosité ne se voit avec l'uranium et le thorium. Enfin, l'action ionisante sur l'air est aussi considérablement plus intense, dans le rapport de 106 environ. Mais il n'est, à vrai dire, plus possible d'évaluer l'intensité totale du rayonnement, comme pour l'uranium, par la méthode électrique décrite au début (fig. 1). En effet, dans le cas de l'uranium, par exemple, le rayonnement est très approximativement absorbé dans la couche d'air qui sépare les plateaux, et le courant limite est atteint pour une tension de 100 volts. Mais il n'en est plus de même pour les substances fortement radioactives. Une partie du rayonnement du radium est constituée par des rayons très pénétrants qui traversent le condensateur et les plateaux métalliques, et ne sont nullement utilisés à ioniser l'air entre les plateaux. De plus le courant limite ne peut pas toujours être obtenu pour les tensions dont on dispose; c'est ainsi que, pour le polonium très actif, le courant est encore proportionnel à la tension entre 100 et 500 volts. Les conditions expérimentales qui donnent à la mesure une signification simple ne sont donc pas réalisées, et, par suite, les nombres obtenus ne peuvent être considérés comme donnant la mesure du rayonnement total; ils ne constituent, à ce point de vue, qu'une approximation grossière.
1º Les rayons α sont des rayons très peu pénétrants qui semblent constituer la plus grosse partie de rayonnement. Ces rayons sont caractérisés par les lois suivant lesquelles ils sont absorbés par la matière. Le champ magnétique agit très faiblement sur ces rayons, et on les a considérés tout d'abord comme insensibles à l'action de ce champ. Cependant, dans un champ magnétique intense, les rayons α sont légèrement déviés; la déviation se produit de la même manière que dans le cas des rayons cathodiques, mais le sens de la déviation est renversé; il est le même que pour les rayons canaux des tubes de Crookes.
2º Les rayons β sont des rayons moins absorbables dans leur ensemble que les précédents. Ils sont déviés par un champ magnétique de la même manière et dans le même sens que les rayons cathodiques.
3º Les rayons γ sont des rayons pénétrants insensibles à l'action du champ magnétique et comparables aux rayons de Röntgen.
Les rayons d'un même groupe peuvent avoir un pouvoir de pénétration qui varie dans des limites très étendues, comme cela a été prouvé pour les rayons β.
Imaginons l'expérience suivante: le radium R est placé au fond d'une petite cavité profonde creusée dans un bloc de plomb P (fig. 4). Un faisceau de rayons rectiligne et peu épanoui s'échappe de la cuve. Supposons que, dans la région qui entoure la cuve, on établisse un champ magnétique uniforme, très intense, normal au plan de la figure et dirigé vers l'arrière de ce plan. Les trois groupes de rayons α, β, γ se trouveront séparés. Les rayons γ peu intenses continuent leur trajet rectiligne sans trace de déviation. Les rayons β sont déviés à la façon de rayons cathodiques et décrivent dans le plan de la figure des trajectoires circulaires dont le rayon varie dans des limites étendues. Si la cuve est placée sur une plaque photographique AC, la portion BC de la plaque qui reçoit les rayons β est impressionnée. Enfin, les rayons α forment un faisceau très intense qui est dévié légèrement et qui est assez rapidement absorbé par l'air. Ces rayons décrivent, dans le plan de la figure, une trajectoire dont le rayon de courbure est très grand, le sens de la déviation étant l'inverse de celui qui a lieu pour les rayons β.
Si l'on recouvre la cuve d'un écran mince en aluminium, (0mm,1 d'épaisseur), les rayons α sont en très grande partie supprimés, les rayons β le sont bien moins et les rayons γ ne semblent pas absorbés notablement.
L'expérience que je viens de décrire n'a pas été réalisée sous cette forme, et l'on verra dans la suite quelles sont les expériences qui montrent l'action du champ magnétique sur les divers groupes de rayons.
Action du champ magnétique.—On a vu que les rayons émis par les substances radioactives ont un grand nombre de propriétés communes aux rayons cathodiques et aux rayons Röntgen. Aussi bien les rayons cathodiques que les rayons Röntgen ionisent l'air, agissent sur les plaques photographiques, excitent la fluorescence, n'éprouvent pas de réflexion régulière. Mais les rayons cathodiques diffèrent des rayons Röntgen en ce qu'ils sont déviés de leur trajet rectiligne par l'action du champ magnétique et en ce qu'ils transportent des charges d'électricité négative.
Le fait que le champ magnétique agit sur les rayons émis par les substances radioactives a été découvert presque simultanément par MM. Giesel, Meyer et von Schweidler et Becquerel[40]. Ces physiciens ont reconnu que les rayons des substances radioactives sont déviés par le champ magnétique de la même façon et dans le même sens que les rayons cathodiques; leurs observations se rapportaient aux rayons β.
M. Curie a montré que le rayonnement du radium comporte deux groupes de rayons bien distincts, dont l'un est facilement dévié par le champ magnétique (rayons β) alors que l'autre reste insensible à l'action de ce champ (rayons α et γ dont l'ensemble était désigné par le nom de rayons non déviables)[41].
M. Becquerel n'a pas observé d'émission de rayons genre cathodique par les échantillons de polonium préparés par nous. C'est, au contraire, sur un échantillon de polonium, préparé par lui, que M. Giesel a observé pour la première fois l'effet du champ magnétique. De tous les échantillons de polonium, préparés par nous, aucun n'a jamais donné lieu à une émission de rayons genre cathodique.
Le polonium de M. Giesel n'émet des rayons genre cathodique que quand il est récemment préparé, et il est probable que l'émission est due au phénomène de radioactivité induite dont il sera question plus loin.
Voici les expériences qui prouvent qu'une partie du rayonnement du radium et une partie seulement est constituée par des rayons facilement déviables (rayons β). Ces expériences ont été faites par la méthode électrique[42].
Le corps radioactif (fig. 5) envoie des radiations suivant la direction AD entre les plateaux P et P'. Le plateau P est maintenu au potentiel de 500 volts, le plateau P' est relié à un électromètre et à un quartz piézoélectrique. On mesure l'intensité du courant qui passe dans l'air sous l'influence des radiations. On peut à volonté établir le champ magnétique d'un électro-aimant normalement au plan de la figure dans toute la région EEEE. Si les rayons sont déviés, même faiblement, ils ne pénètrent plus entre les plateaux, et le courant est supprimé. La région où passent les rayons est entourée par les masses de plomb B, B', B" et par les armatures de l'électro-aimant; quand les rayons sont déviés, ils sont absorbés par les masses de plomb B et B'.
Les résultats obtenus dépendent essentiellement de la distance AD du corps radiant A à l'entrée du condensateur en D. Si la distance AD est assez grande (supérieure à 7cm), la plus grande partie (90 pour 100 environ) des rayons du radium qui arrivent au condensateur sont déviés et supprimés pour un champ de 2500 unités. Ces rayons sont des rayons β. Si la distance AD est plus faible que 65mm, une partie moins importante des rayons est déviée par l'action du champ; cette partie est d'ailleurs déjà complètement déviée par un champ de 2500 unités, et la proportion de rayons supprimés n'augmente pas quand on fait croître le champ de 2500 à 7000 unités.
La proportion des rayons non supprimés par le champ est d'autant plus grande que la distance AD entre le corps radiant et le condensateur est plus petite. Pour les distances faibles les rayons qui peuvent être déviés facilement ne constituent plus qu'une très faible fraction du rayonnement total.
Les rayons pénétrants sont donc, en majeure partie, des rayons déviables genre cathodique (rayons β).
Avec le dispositif expérimental qui vient d'être décrit, l'action du champ magnétique sur les rayons α ne pouvait guère être observée pour les champs employés. Le rayonnement très important, en apparence non déviable, observé à petite distance de la source radiante, était constitué par les rayons α; le rayonnement non déviable observé à grande distance était constitué par les rayons γ.
Lorsque l'on tamise le faisceau au travers d'une lame absorbante (aluminium ou papier noir), les rayons qui passent sont presque tous déviés par le champ, de telle sorte qu'à l'aide de l'écran et du champ magnétique presque tout le rayonnement est supprimé dans le condensateur, ce qui reste n'étant alors dû qu'aux rayons γ, dont la proportion est faible. Quant aux rayons α, ils sont absorbés par l'écran.
Une lame d'aluminium de 1/100 de millimètre d'épaisseur suffit pour supprimer presque tous les rayons difficilement déviables, quand la substance est assez loin du condensateur; pour des distances plus petites (34mm et 51mm), deux feuilles d'aluminium au 1/100 sont nécessaires pour obtenir ce résultat.
On a fait des mesures semblables sur quatre substances radifères (chlorures ou carbonates) d'activité très différente; les résultats obtenus ont été très analogues.
On peut remarquer que, pour tous les échantillons, les rayons pénétrants déviables à l'aimant (rayons β) ne sont qu'une faible partie du rayonnement total; ils n'interviennent que pour une faible part dans les mesures où l'on utilise le rayonnement intégral pour produire la conductibilité de l'air.
On peut étudier la radiation émise par le polonium par la méthode électrique. Quand on fait varier la distance AD du polonium au condensateur, on n'observe d'abord aucun courant tant que la distance est assez grande; quand on rapproche le polonium, on observe que, pour une certaine distance qui était de 4cm pour l'échantillon étudié, le rayonnement se fait très brusquement sentir avec une assez grande intensité; le courant augmente ensuite régulièrement si l'on continue à rapprocher le polonium, mais le champ magnétique ne produit pas d'effet appréciable dans ces conditions. Il semble que le rayonnement du polonium soit délimité dans l'espace et dépasse à peine dans l'air une sorte de gaine entourant la substance sur l'épaisseur de quelques centimètres.
Il convient de faire des réserves générales importantes sur la signification des expériences que je viens de décrire. Quand j'indique la proportion des rayons déviés par l'aimant, il s'agit seulement des radiations susceptibles d'actionner un courant dans le condensateur. En employant comme réactif des rayons de Becquerel la fluorescence ou l'action sur les plaques photographiques, la proportion serait probablement différente, une mesure d'intensité n'ayant généralement un sens que pour la méthode de mesures employée.
Les rayons du polonium sont des rayons du genre α. Dans les expériences que je viens de décrire, on n'a observé aucun effet du champ magnétique sur ces rayons, mais le dispositif expérimental était tel qu'une faible déviation passait inaperçue.
Des expériences faites par la méthode radiographique ont confirmé les résultats de celles qui précèdent. En employant le radium comme source radiante, et en recevant l'impression sur une plaque parallèle au faisceau primitif et normale au champ, on obtient la trace très nette de deux faisceaux séparés par l'action du champ, l'un dévié, l'autre non dévié. Les rayons β constituent le faisceau dévié; les rayons α étant peu déviés se confondent sensiblement avec le faisceau non dévié des rayons γ.
Rayons déviables β.—Il résultait des expériences de MM. Giesel et de MM. Meyer et von Schweidler que le rayonnement des corps radioactifs est au moins en partie dévié par un champ magnétique, et que la déviation se fait comme pour les rayons cathodiques. M. Becquerel a étudié l'action du champ sur les rayons par la méthode radiographique[43]. Le dispositif expérimental employé était celui de la figure 4. Le radium était placé dans la cuve en plomb P, et cette cuve était posée sur la face sensible d'une plaque photographique AC enveloppée de papier noir. Le tout était placé entre les pôles d'un électro-aimant, le champ magnétique étant normal au plan de la figure.
Si le champ est dirigé vers l'arrière de ce plan, la partie BC de la plaque se trouve impressionnée par des rayons qui, ayant décrit des trajectoires circulaires, sont rabattus sur la plaque et viennent la couper à angle droit. Ces rayons sont des rayons β.
M. Becquerel a montré que l'impression constitue une large bande diffuse, véritable spectre continu, montrant que le faisceau de rayons déviables émis par la source est constitué par une infinité de radiations inégalement déviables. Si l'on recouvre la gélatine de la plaque de divers écrans absorbants (papier, verre, métaux), une portion du spectre se trouve supprimée, et l'on constate que les rayons les plus déviés par le champ magnétique, autrement dit ceux qui donnent la plus petite valeur du rayon de la trajectoire circulaire, sont le plus fortement absorbés. Pour chaque écran l'impression sur la plaque ne commence qu'à une certaine distance de la source radiante, cette distance étant d'autant plus grande que l'écran est plus absorbant.
Charge des rayons déviables.—Les rayons cathodiques sont, comme l'a montré M. Perrin, chargés d'électricité négative[44]. De plus ils peuvent, d'après les expériences de M. Perrin et de M. Lenard[45], transporter leur charge à travers des enveloppes métalliques réunies à la terre et à travers des lames isolantes. En tout point, où les rayons cathodiques sont absorbés, se fait un dégagement continu d'électricité négative. Nous avons constaté qu'il en est de même pour les rayons déviables β du radium. Les rayons déviables β du radium sont chargés d'électricité négative[46].
Étalons la substance radioactive sur l'un des plateaux d'un condensateur, ce plateau étant relié métalliquement à la terre; le second plateau est relié à un électromètre, il reçoit et absorbe les rayons émis par la substance. Si les rayons sont chargés, on doit observer une arrivée continue d'électricité à l'électromètre. Cette expérience, réalisée dans l'air, ne nous a pas permis de déceler une charge des rayons, mais l'expérience ainsi faite n'est pas sensible. L'air entre les plateaux étant rendu conducteur par les rayons, l'électromètre n'est plus isolé et ne peut accuser que des charges assez fortes.
Pour que les rayons α ne puissent apporter de trouble dans l'expérience, on peut les supprimer en recouvrant la source radiante d'un écran métallique mince; le résultat de l'expérience n'est pas modifié[47].
Nous avons sans plus de succès répété cette expérience dans l'air en faisant pénétrer les rayons dans l'intérieur d'un cylindre de Faraday en relation avec l'électromètre[48].
On pouvait déjà se rendre compte, d'après les expériences qui précèdent, que la charge des rayons du produit radiant employé était faible.
Pour constater un faible dégagement d'électricité sur le conducteur qui absorbe les rayons, il faut que ce conducteur soit bien isolé électriquement; pour obtenir ce résultat, il est nécessaire de le mettre à l'abri de l'air, soit en le plaçant dans un tube avec un vide très parfait, soit en l'entourant d'un bon diélectrique solide. C'est ce dernier dispositif que nous avons employé.
Un disque conducteur MM (fig. 6) est relié par la tige métallique t à l'électromètre; disque et tige sont complètement entourés de matière isolante iiii; le tout est recouvert d'une enveloppe métallique EEEE qui est en communication électrique avec la terre. Sur l'une des faces du disque, l'isolant pp et l'enveloppe métallique sont très minces. C'est cette face qui est exposée au rayonnement du sel de baryum radifère R, placé à l'extérieur dans une auge en plomb[49]. Les rayons émis par le radium traversent l'enveloppe métallique et la lame isolante pp, et sont absorbés par le disque métallique MM. Celui-ci est alors le siège d'un dégagement continu et constant d'électricité négative que l'on constate à l'électromètre et que l'on mesure à l'aide du quartz piézoélectrique.
Le courant ainsi créé est très faible. Avec du chlorure de baryum radifère très actif formant une couche de 2cm²,5 de surface et de 0cm,2 d'épaisseur, on obtient un courant de l'ordre de grandeur de 10-11 ampère, les rayons utilisés ayant traversé, avant d'être absorbés par le disque MM, une épaisseur d'aluminium de 0mm,01 et une épaisseur d'ébonite de 0mm,3.
Nous avons employé successivement du plomb, du cuivre et du zinc pour le disque MM, de l'ébonite et de la paraffine pour l'isolant; les résultats obtenus ont été les mêmes.
Le courant diminue quand on éloigne la source radiante R, ou quand on emploie un produit moins actif.
Nous avons encore obtenu les mêmes résultats en remplaçant le disque MM par un cylindre de Faraday rempli d'air, mais enveloppé extérieurement par une matière isolante. L'ouverture du cylindre, fermée par la plaque isolante mince pp, était alors en face de la source radiante.
Enfin nous avons fait l'expérience inverse, qui consiste à placer l'auge de plomb avec le radium au milieu de la matière isolante et en relation avec l'électromètre (fig. 7), le tout étant enveloppé par l'enceinte métallique reliée à la terre.
Dans ces conditions, on observe à l'électromètre que le radium prend une charge positive et égale en grandeur à la charge négative de la première expérience. Les rayons du radium traversent la plaque diélectrique mince pp et quittent le conducteur intérieur en emportant de l'électricité négative.
Les rayons α du radium n'interviennent pas dans ces expériences, étant absorbés presque totalement par une épaisseur extrêmement faible de matière. La méthode qui vient d'être décrite ne convient pas non plus pour l'étude de la charge des rayons du polonium, ces rayons étant également très peu pénétrants. Nous n'avons observé aucun indice de charge avec du polonium, qui émet seulement des rayons α; mais, pour la raison qui précède, on ne peut tirer de cette expérience aucune conclusion.
Ainsi, dans le cas des rayons déviables β du radium, comme dans le cas des rayons cathodiques, les rayons transportent de l'électricité. Or, jusqu'ici on n'a jamais reconnu l'existence de charges électriques non liées à la matière. On est donc amené à se servir, dans l'étude de l'émission des rayons déviables β du radium, de la même théorie que celle actuellement en usage pour l'étude des rayons cathodiques. Dans cette théorie balistique, qui a été formulée par Sir W. Crookes, puis développée et complétée par M. J.-J. Thompson, les rayons cathodiques sont constitués par des particules extrêmement ténues qui sont lancées à partir de la cathode avec une très grande vitesse, et qui sont chargées d'électricité négative. On peut de même concevoir que le radium envoie dans l'espace des particules chargées négativement.
Un échantillon de radium renfermé dans une enveloppe solide, mince, parfaitement isolante, doit se charger spontanément à un potentiel très élevé. Dans l'hypothèse balistique le potentiel augmenterait, jusqu'à ce que la différence de potentiel avec les conducteurs environnants devînt suffisante pour empêcher l'éloignement des particules électrisées émises et amener leur retour à la source radiante.
Nous avons réalisé par hasard l'expérience dont il est question ici. Un échantillon de radium très actif était enfermé depuis longtemps dans une ampoule de verre. Pour ouvrir l'ampoule, nous avons fait avec un couteau à verre un trait sur le verre. A ce moment nous avons entendu nettement le bruit d'une étincelle, et en observant ensuite l'ampoule à la loupe, nous avons aperçu que le verre avait été perforé par une étincelle à l'endroit où il s'était trouvé aminci par le trait. Le phénomène qui s'est produit là est exactement comparable à la rupture du verre d'une bouteille de Leyde trop chargée.
Le même phénomène s'est reproduit avec une autre ampoule. De plus, au moment où l'étincelle a éclaté, M. Curie qui tenait l'ampoule ressentit dans les doigts la secousse électrique due à la décharge.
Certains verres ont de bonnes propriétés isolantes. Si l'on enferme le radium dans une ampoule de verre scellée et bien isolante, on peut s'attendre à ce que cette ampoule à un moment donné se perce spontanément.
Le radium est le premier exemple d'un corps qui se charge spontanément d'électricité.
Action du champ électrique sur les rayons déviables β du radium.—Les rayons déviables β du radium étant assimilés à des rayons cathodiques doivent être déviés par un champ électrique de la même façon que ces derniers, c'est-à-dire comme le serait une particule matérielle chargée négativement et lancée dans l'espace avec une grande vitesse. L'existence de cette déviation a été montrée, d'une part, par M. Dorn[50], d'autre part, par M. Becquerel[51].
Considérons un rayon qui traverse l'espace situé entre les deux plateaux d'un condensateur. Supposons la direction du rayon parallèle aux plateaux. Quand on établit entre ces derniers un champ électrique, le rayon est soumis à l'action de ce champ uniforme sur toute la longueur du trajet dans le condensateur, soit l. En vertu de cette action le rayon est dévié vers le plateau positif et décrit un arc de parabole; en sortant du champ il continue son chemin en ligne droite suivant la tangente à l'arc de parabole au point de sortie. On peut recevoir le rayon sur une plaque photographique normale à sa direction primitive. On observe l'impression produite sur la plaque quand le champ est nul et quand le champ a une valeur connue, et l'on déduit de là la valeur de la déviation δ, qui est la distance des points, où la nouvelle direction du rayon et sa direction primitive rencontrent un même plan normal à la direction primitive. Si h est la distance de ce plan au condensateur, c'est-à-dire à la limite du champ, on a, par un calcul simple,
m étant la masse de la particule en mouvement, e sa charge, v sa vitesse et F la valeur du champ.
Les expériences de M. Becquerel lui ont permis de donner une valeur approchée de δ.
Rapport de la charge à la masse pour une particule, chargée négativement, émise par le radium.—Quand une particule matérielle, ayant la masse m et la charge négative e, est lancée avec une vitesse v dans un champ magnétique uniforme normal à sa vitesse initiale, cette particule décrit dans un plan normal au champ et passant par sa vitesse initiale un arc de cercle de rayon ρ tel que, H étant la valeur du champ, on a la relation
Si l'on a mesuré pour un même rayon la déviation électrique δ et le rayon de courbure ρ dans un champ magnétique, on pourra, de ces deux expériences, tirer les valeurs du rapport e/m de la vitesse v.
Les expériences de M. Becquerel ont fourni une première indication à ce sujet. Elles ont donné pour le rapport e/m une valeur approchée égale à 107 unités électromagnétiques absolues, et pour v une grandeur égale à 1,6 × 1010. Ces valeurs sont du même ordre de grandeur que pour les rayons cathodiques.
Des expériences précises ont été faites sur le même sujet par M. Kaufmann[52]. Ce physicien a soumis un faisceau très étroit de rayons du radium à l'action simultanée d'un champ électrique et d'un champ magnétique, les deux champs étant uniformes et ayant une même direction, normale à la direction primitive du faisceau. L'impression produite sur une plaque normale au faisceau primitif et placée au-dessus des limites du champ par rapport à la source prend la forme d'une courbe, dont chaque point correspond à l'un des rayons du faisceau primitif hétérogène. Les rayons les plus pénétrants et les moins déviables sont d'ailleurs ceux dont la vitesse est la plus grande.
Il résulte des expériences de M. Kaufmann que pour les rayons du radium, dont la vitesse est notablement supérieure à celle des rayons cathodiques, le rapport e/m va en diminuant quand la vitesse augmente.
D'après les travaux de J.-J. Thomson et de Townsend[53] nous devons admettre que la particule en mouvement, qui constitue le rayon, possède une charge e égale à celle transportée par un atome d'hydrogène dans l'électrolyse, cette charge étant la même pour tous les rayons. On est donc conduit à conclure que la masse de la particule m va en augmentant quand la vitesse augmente.
Or, des considérations théoriques conduisent à concevoir que l'inertie de la particule est précisément due à son état de charge en mouvement, la vitesse d'une charge électrique en mouvement ne pouvant être modifiée sans dépense d'énergie. Autrement dit, l'inertie de la particule est d'origine électromagnétique, et la masse de la particule est au moins en partie une masse apparente ou masse électromagnétique. M. Abraham[54] va plus loin et suppose que la masse de la particule est entièrement une masse électromagnétique. Si dans cette hypothèse on calcule la valeur de cette masse m pour une vitesse connue v, on trouve que m tend vers l'infini quand v tend vers la vitesse de la lumière, et que m tend vers une valeur constante quand la vitesse v est très inférieure à celle de la lumière. Les expériences de M. Kaufmann sont en accord avec les résultats de cette théorie dont l'importance est grande, puisqu'elle permet de prévoir la possibilité d'établir les bases de la mécanique sur la dynamique de petits centres matériels chargés en état de mouvement[55].
Voici les nombres obtenus par M. Kaufmann pour e/m et v:
| e/m unités électromagnétiques. | v cm/sec. | ||
| 1,865 × 107 | 0,7 × 1010 | pour les rayons cathodiques. | |
| 1,31 × 107 | 2,36 × 1010 | pour les rayons du radium (Kaufmann). | |
| 1,17 » | 2,48 » | ||
| 0,97 » | 2,59 » | ||
| 0,77 » | 2,72 » | ||
| 0,63 » | 2,83 » |
M. Kaufmann conclut de la comparaison de ses expériences avec la théorie, que la valeur limite du rapport e/m pour les rayons du radium de vitesse relativement faible serait la même que la valeur de e/m pour les rayons cathodiques.
Les expériences les plus complètes de M. Kaufmann ont été faites avec un grain minuscule de chlorure de radium pur, que nous avons mis à sa disposition.
D'après les expériences de M. Kaufmann certains rayons β du radium possèdent une vitesse très voisine de celle de la lumière. On comprend que ces rayons si rapides puissent jouir d'un pouvoir pénétrant très grand vis-à-vis de la matière.
Action du champ magnétique sur les rayons α.—Dans un travail récent, M. Rutherford a annoncé[56] que, dans un champ magnétique ou électrique puissant, les rayons α du radium sont légèrement déviés à la façon de particules électrisées positivement et animées d'une grande vitesse. M. Rutherford conclut de ses expériences que la vitesse des rayons α est de l'ordre de grandeur 2,5 × 109 cm/sec et que le rapport e/m pour ces rayons est de l'ordre de grandeur 6 × 103, soit 104 fois plus grand que pour les rayons déviables β. On verra plus loin que ces conclusions de M. Rutherford sont en accord avec les propriétés antérieurement connues du rayonnement α, et qu'elles rendent compte, au moins en partie, de la loi d'absorption de ce rayonnement.
Les expériences de M. Rutherford ont été confirmées par M. Becquerel. M. Becquerel a montré, de plus, que les rayons du polonium se comportent dans un champ magnétique comme les rayons α du radium et qu'ils semblent prendre, à champ égal, la même courbure que ces derniers. Il résulte aussi des expériences de M. Becquerel que les rayons α ne semblent pas former de spectre magnétique, mais se comportent plutôt comme un rayonnement homogène, tous les rayons étant également déviés[57].
M. Des Coudres a fait une mesure de la déviation électrique et de la déviation magnétique des rayons α du radium dans le vide. Il a trouvé pour la vitesse de ces rayons v = 1,65 × 109 cm/sec et pour le rapport de la charge à la masse e/m = 6400 en unités électromagnétiques[58]. La vitesse des rayons α est donc environ 20 fois plus faible que celle de la lumière. Le rapport e/m est du même ordre de grandeur que celui que l'on trouve pour l'hydrogène dans l'électrolyse: e/m = 9650. Si donc on admet que la charge de chaque projectile est la même que celle d'un atome d'hydrogène dans l'électrolyse, on en conclut que la masse de ce projectile est du même ordre de grandeur que celle d'un atome d'hydrogène.
Or nous venons de voir que, pour les rayons cathodiques et pour les rayons β du radium les plus lents, le rapport e/m est égal à 1,865 × 107; ce rapport est donc environ 2000 fois plus grand que celui obtenu dans l'électrolyse. La charge de la particule chargée négativement étant supposée la même que celle d'un atome d'hydrogène, sa masse limite pour les vitesses relativement faibles serait donc environ 2000 fois plus petite que celle d'un atome d'hydrogène.
Les projectiles qui constituent les rayons β sont donc à la fois beaucoup plus petits et animés d'une vitesse plus grande que ceux qui constituent les rayons α. On comprend alors facilement que les premiers possèdent un pouvoir pénétrant bien plus grand que les seconds.
Proportion des rayons déviables β dans le rayonnement du radium.—Comme je l'ai déjà dit, la proportion des rayons β va en augmentant, à mesure qu'on s'éloigne de la source radiante. Toutefois, ces rayons ne se montrent jamais seuls, et pour les grandes distances on observe aussi toujours la présence de rayons γ. La présence de rayons non déviables très pénétrants dans le rayonnement du radium a été, pour la première fois, observée par M. Villard[59]. Ces rayons ne constituent qu'une faible partie du rayonnement mesuré par la méthode électrique, et leur présence nous avait échappé dans nos premières expériences, de sorte que nous croyions alors à tort que le rayonnement à grande distance ne contenait que des rayons déviables.
Voici les résultats numériques obtenus dans des expériences faites par la méthode électrique avec un appareil analogue à celui de la figure 5. Le radium n'était séparé du condensateur que par l'air ambiant. Je désigne par d la distance de la source radiante au condensateur. En supposant égal à 100 le courant obtenu sans champ magnétique pour chaque distance, les nombres de la deuxième ligne indiquent le courant qui subsiste quand le champ agit. Ces nombres peuvent être considérés comme donnant le pourcentage de l'ensemble des rayons α et γ, la déviation des rayons α n'ayant guère pu être observée avec le dispositif employé.
Aux grandes distances on n'a plus de rayons α, et le rayonnement non dévié est alors du genre γ seulement.
Expériences faites à petite distance:
| d en centimètres. | 3,4 | 5,1 | 6,0 | 6,5 |
| Pour 100 de rayons non déviés. | 74 | 56 | 33 | 11 |
Expériences faites aux grandes distances, avec un produit considérablement plus actif que celui qui avait servi pour la série précédente:
| d en centimètres. | 14 | 30 | 53 | 80 | 98 | 124 | 157 |
| Pour 100 de rayons déviés. | 12 | 14 | 17 | 14 | 16 | 14 | 11 |
On voit, qu'à partir d'une certaine distance, la proportion des rayons non déviés dans le rayonnement est approximativement constante. Ces rayons appartiennent probablement tous à l'espèce γ. Il n'y a pas à tenir compte outre mesure des irrégularités dans les nombres de la seconde ligne, si l'on envisage que l'intensité totale du courant dans les deux expériences extrêmes était dans le rapport de 660 à 10. Les mesures ont pu être poursuivies jusqu'à une distance de 1m,57 de la source radiante, et nous pourrions aller encore plus loin actuellement.
Voici une autre série d'expériences, dans lesquelles le radium était enfermé dans un tube de verre très étroit, placé au-dessous du condensateur et parallèlement aux plateaux. Les rayons émis traversaient une certaine épaisseur de verre et d'air, avant d'entrer dans le condensateur.
| d en centimètres. | 2,5 | 3,3 | 4,1 | 5,9 | 7,5 | 9,6 | 11,3 | 13,9 | 17,2 |
| Pour 100 de rayons non déviés. | 33 | 33 | 21 | 16 | 14 | 10 | 9 | 9 | 10 |
Comme dans les expériences précédentes, les nombres de la seconde ligne tendent vers une valeur constante quand la distance d croît, mais la limite est sensiblement atteinte pour des distances plus petites que dans les séries précédentes, parce que les rayons α ont été plus fortement absorbés par le verre que les rayons β et γ.
Voici une autre expérience qui montre qu'une lame d'aluminium mince (épaisseur 0mm,01) absorbe principalement les rayons α. Le produit étant placé à 5cm du condensateur, on trouve en faisant agir le champ magnétique que la proportion des rayons autres que β est de 71 pour 100. Le même produit étant recouvert de la lame d'aluminium, et la distance restant la même, on trouve que le rayonnement transmis est presque totalement dévié par le champ magnétique, les rayons α ayant été absorbés par la lame. On obtient le même résultat en employant le papier comme écran absorbant.
La plus grosse partie du rayonnement du radium est formée par des rayons α qui sont probablement émis surtout par la couche superficielle de la matière radiante. Quand on fait varier l'épaisseur de la couche de la matière radiante, l'intensité du courant augmente avec cette épaisseur; l'augmentation n'est pas proportionnelle à l'accroissement d'épaisseur pour la totalité du rayonnement; elle est d'ailleurs plus notable sur les rayons β que sur les rayons α, de sorte que la proportion de rayons β va en croissant avec l'épaisseur de la couche active. La source radiante étant placée à une distance de 5cm du condensateur, on trouve que, pour une épaisseur égale à 0mm,4 de la couche active, le rayonnement total est donné par le nombre 28 et la proportion des rayons β est de 29 pour 100. En donnant à la couche active l'épaisseur de 2mm, soit 5 fois plus grande, on obtient un rayonnement total égal à 102 et une proportion de rayons déviables β égale à 45 pour 100. Le rayonnement total qui subsiste à cette distance a donc été augmenté dans le rapport 3,6 et le rayonnement déviable β est devenu environ 5 fois plus fort.
Les expériences précédentes ont été faites par la méthode électrique. Quand on opère par la méthode radiographique, certains résultats semblent, en apparence, être en contradiction avec ce qui précède. Dans les expériences de M. Villard, un faisceau de rayons du radium soumis à l'action d'un champ magnétique était reçu sur une pile de plaques photographiques. Le faisceau non déviable et pénétrant γ traversait toutes les plaques et marquait sa trace sur chacune d'elles. Le faisceau dévié β produisait une impression sur la première plaque seulement. Ce faisceau paraissait donc ne point contenir de rayons de grande pénétration.
Au contraire, dans nos expériences, un faisceau qui se propage dans l'air contient aux plus grandes distances accessibles à l'observation 9/10 environ de rayons déviables β, et il en est encore de même, quand la source radiante est enfermée dans une petite ampoule de verre scellée. Dans les expériences de M. Villard, ces rayons déviables et pénétrants β n'impressionnent pas les plaques photographiques placées au delà de la première, parce qu'ils sont en grande partie diffusés dans tous les sens par le premier obstacle solide rencontré et cessent de former un faisceau. Dans nos expériences, les rayons émis par le radium et transmis par le verre de l'ampoule étaient probablement aussi diffusés par le verre, mais l'ampoule étant très petite, fonctionnait alors elle-même comme une source de rayons déviables β partant de sa surface, et nous avons pu observer ces derniers jusqu'à une grande distance de l'ampoule.
Les rayons cathodiques des tubes de Crookes ne peuvent traverser que des écrans très minces (écrans d'aluminium jusqu'à 0mm,01 d'épaisseur). Un faisceau de rayons qui arrive normalement sur l'écran est diffusé dans tous les sens; mais la diffusion est d'autant moins importante que l'écran est plus mince, et pour des écrans très minces il existe un faisceau sortant qui est sensiblement le prolongement du faisceau incident[60].
Les rayons déviables β du radium se comportent d'une manière analogue, mais le faisceau déviable transmis éprouve, à épaisseur d'écran égale, une modification beaucoup moins profonde. D'après les expériences de M. Becquerel, les rayons β très fortement déviables du radium (ceux dont la vitesse est relativement faible) sont fortement diffusés par un écran d'aluminium de 0mm,1 d'épaisseur; mais les rayons pénétrants et peu déviables (rayons genre cathodique de grande vitesse) traversent ce même écran sans aucune diffusion sensible, et sans que le faisceau qu'ils constituent soit déformé, et cela quelle que soit l'inclinaison de l'écran par rapport au faisceau. Les rayons β de grande vitesse traversent sans diffusion une épaisseur bien plus grande de paraffine (quelques centimètres), et l'on peut suivre dans celle-ci la courbure du faisceau produite par le champ magnétique. Plus l'écran est épais et plus sa matière est absorbante, plus le faisceau déviable primitif est altéré, parce que, à mesure que l'épaisseur de l'écran croît, la diffusion commence à se faire sentir sur de nouveaux groupes de rayons de plus en plus pénétrants.
L'air produit sur les rayons β du radium qui le traversent une diffusion, qui est très sensible pour les rayons fortement déviables, mais qui est cependant bien moins importante que celle qui est due à des épaisseurs égales de matières solides traversées. C'est pourquoi les rayons déviables β du radium se propagent dans l'air à de grandes distances.
Pouvoir pénétrant du rayonnement des corps radioactifs.—Dès le début des recherches sur les corps radioactifs, on s'est préoccupé de l'absorption produite par divers écrans sur les rayons émis par ces substances. J'ai donné dans une première Note relative à ce sujet[61] plusieurs nombres cités au début de ce travail indiquant la pénétration relative des rayons uraniques et thoriques. M. Rutherford a étudié plus spécialement la radiation uranique[62] et prouvé qu'elle était hétérogène. M. Owens a conclu de même pour les rayons thoriques[63]. Quand vint ensuite la découverte des substances fortement radioactives, le pouvoir pénétrant de leurs rayons fut aussitôt étudié par divers physiciens (Becquerel, Meyer et von Schweidler, Curie, Rutherford). Les premières observations mirent en évidence l'hétérogénéité du rayonnement qui semble être un phénomène général et commun aux substances radioactives[64]. On se trouve là en présence de sources, qui émettent un ensemble de radiations, dont chacune a un pouvoir pénétrant qui lui est propre. La question se complique encore par ce fait, qu'il y a lieu de rechercher en quelle mesure la nature de la radiation peut se trouver modifiée par le passage à travers les substances matérielles et que, par conséquent, chaque ensemble de mesures n'a une signification précise que pour le dispositif expérimental employé.
Ces réserves étant faites, on peut chercher à coordonner les diverses expériences et à exposer l'ensemble des résultats acquis.
Les corps radioactifs émettent des rayons qui se propagent dans l'air et dans le vide. La propagation est rectiligne; ce fait est prouvé par la netteté et la forme des ombres fournies par l'interposition de corps, opaques au rayonnement, entre la source et la plaque sensible ou l'écran fluorescent qui sert de récepteur, la source ayant des dimensions petites par rapport à sa distance au récepteur. Diverses expériences qui prouvent la propagation rectiligne des rayons émis par l'uranium, le radium et le polonium ont été faites par M. Becquerel[65].
La distance à laquelle les rayons peuvent se propager dans l'air à partir de la source est intéressante à connaître. Nous avons constaté que le radium émet des rayons qui peuvent être observés dans l'air à plusieurs mètres de distance. Dans certaines de nos mesures électriques, l'action de la source sur l'air du condensateur s'exerçait à une distance comprise entre 2m et 3m. Nous avons également obtenu des effets de fluorescence et des impressions radiographiques à des distances du même ordre de grandeur. Ces expériences ne peuvent être faites facilement qu'avec des sources radioactives très intenses, parce que, indépendamment de l'absorption exercée par l'air, l'action sur un récepteur donné varie en raison inverse du carré de la distance à une source de petites dimensions. Ce rayonnement, qui se propage à grande distance du radium, comprend aussi bien des rayons genre cathodique que des rayons non déviables; cependant, les rayons déviables dominent de beaucoup, d'après les expériences que j'ai citées plus haut. Quant à la grosse masse du rayonnement (rayons α), elle est, au contraire, limitée dans l'air à une distance de 7cm environ de la source.
J'ai fait quelques expériences avec du radium enfermé dans une petite ampoule de verre. Les rayons qui sortaient de cette ampoule franchissaient un certain espace d'air et étaient reçus dans un condensateur, qui servait à mesurer leur pouvoir ionisant par la méthode électrique ordinaire. On faisait varier la distance d de la source au condensateur et l'on mesurait le courant de saturation i obtenu dans le condensateur. Voici les résultats d'une des séries de mesures:
| d cm. | i. | (i × d2) × 10-3. |
| 10 | 127 | 13 |
| 20 | 38 | 15 |
| 30 | 17,4 | 16 |
| 40 | 10,5 | 17 |
| 50 | 6,9 | 17 |
| 60 | 4,7 | 17 |
| 70 | 3,8 | 19 |
| 100 | 1,65 | 17 |
A partir d'une certaine distance, l'intensité du rayonnement varie sensiblement en raison inverse du carré de la distance au condensateur.
Le rayonnement du polonium ne se propage dans l'air qu'à une distance de quelques centimètres (4cm à 6cm) de la source radiante.
Si l'on considère l'absorption des radiations par les écrans solides, on constate là encore une différence fondamentale entre le radium et le polonium. Le radium émet des rayons capables de traverser une grande épaisseur de matière solide, par exemple quelques centimètres de plomb ou de verre[66]. Les rayons qui ont traversé une grande épaisseur d'un corps solide sont extrêmement pénétrants, et, pratiquement, on n'arrive plus, pour ainsi dire, à les faire absorber intégralement par quoi que ce soit. Mais ces rayons ne constituent qu'une faible fraction du rayonnement total, dont la grosse masse est, au contraire, absorbée par une faible épaisseur de matière solide.
Le polonium émet des rayons extrêmement absorbables qui ne peuvent traverser que des écrans solides très minces.
Voici, à titre d'exemple, quelques nombres relatifs à l'absorption produite par une lame d'aluminium d'épaisseur égale à 0mm,01. Cette lame était placée au-dessus et presque au contact de la substance. Le rayonnement direct et celui transmis par la lame étaient mesurés par la méthode électrique (appareil fig. 1); le courant de saturation était sensiblement atteint dans tous les cas. Je désigne par a l'activité de la substance radiante, celle de l'uranium étant prise comme unité.
| a. | Fraction du rayonnement transmise par la lame. | |
| Chlorure de baryum radifère | 57 | 0,32 |
| Bromure » | 43 | 0,30 |
| Chlorure » | 1200 | 0,30 |
| Sulfate » | 5000 | 0,29 |
| Sulfate » | 10000 | 0,32 |
| Bismuth à polonium métallique | 0,22 | |
| Composés d'urane | 0,20 | |
| Composés de thorium en couche mince | 0,38 | |
On voit que des composés radifères de nature et d'activité différentes donnent des résultats très analogues, ainsi que je l'ai indiqué déjà pour les composés d'urane et de thorium au début de ce travail. On voit aussi que si l'on considère toute la masse du rayonnement, et pour la lame absorbante considérée, les diverses substances radiantes viennent se ranger dans l'ordre suivant de pénétration décroissante de leurs rayons: thorium, radium, polonium, uranium.
Ces résultats sont analogues à ceux qui ont été publiés par M. Rutherford dans un Mémoire relatif à cette question[67].
M. Rutherford trouve, d'ailleurs, que l'ordre est le même quand la substance absorbante est constituée par l'air. Mais il est probable que cet ordre n'a rien d'absolu et ne se maintiendrait pas indépendamment de la nature et de l'épaisseur de l'écran considéré. L'expérience montre, en effet, que la loi d'absorption est très différente pour le polonium et le radium et que, pour ce dernier, il y a lieu de considérer séparément l'absorption des rayons de chacun des trois groupes.
Le polonium se prête particulièrement à l'étude des rayons α, puisque les échantillons que nous possédons n'émettent point d'autres rayons. J'ai fait une première série d'expériences avec des échantillons de polonium extrêmement actifs et récemment préparés. J'ai trouvé que les rayons du polonium sont d'autant plus absorbables, que l'épaisseur de matière qu'ils ont déjà traversée est plus grande[68]. Cette loi d'absorption singulière est contraire à celle que l'on connaît pour les autres rayonnements.
J'ai employé pour cette étude notre appareil de mesures de la conductibilité électrique avec le dispositif suivant: