Einstein et l'univers: Une lueur dans le mystère des choses
The Project Gutenberg eBook of Einstein et l'univers: Une lueur dans le mystère des choses
Title: Einstein et l'univers: Une lueur dans le mystère des choses
Author: Charles Nordmann
Release date: January 23, 2013 [eBook #41903]
Most recently updated: October 23, 2024
Language: French
Credits: Produced by Claudine Corbasson, Hans Pieterse and the
Online Distributed Proofreading Team at http://www.pgdp.net
(This file was produced from images generously made
available by The Internet Archive/Canadian Libraries)
Note de transcription:
Quelques erreurs clairement introduites par le typographe ont été corrigées. Pour voir les corrections, faites glisser votre souris, sans cliquer, sur un mot souligné en pointillés gris et le texte d'origine apparaîtra. La liste de ces corrections est donnée à la fin du texte. La ponctuation a fait l'objet de quelques corrections mineures.
EINSTEIN
ET
L'UNIVERS
• LE ROMAN DE LA SCIENCE •
CHARLES NORDMANN
Astronome de l'Observatoire de Paris
EINSTEIN
ET
L'UNIVERS
UNE LUEUR DANS
LE MYSTÈRE DES CHOSES
LIBRAIRIE HACHETTE
Tous droits de traduction, de reproduction
et d'adaptation réservés pour tous pays,
Copyright par Librairie Hachette, 1921.
INTRODUCTION
Ce livre n'est pas un roman. Et pourtant.... Si l'amour est, comme l'assure Platon, un élan vers l'Infini, où donc fleurit plus d'amour que dans cette curiosité passionnée qui nous jette, tête baissée, cœur haletant, contre le mur mystérieux du monde extérieur? Derrière, nous sentons qu'il se passe quelque chose de sublime. Quoi? En le cherchant les hommes ont fondé la Science.
Dans ce mur qui nous masque la réalité un coup gigantesque vient d'être porté par un homme supérieur, Einstein. Grâce à lui, à travers la brèche entr'ouverte, un peu des lumières cachées filtre maintenant jusqu'à nous, et le regard en est charmé, ébloui.
Je voudrais glisser dans ce livre, avec des mots simples et clairs si je puis, un léger reflet de cet éblouissement.
Les théories d'Einstein causent dans la Science un profond bouleversement. Grâce à elles le monde nous paraîtra plus simple, plus coordonné, plus uni. Nous sentirons mieux désormais qu'il est grandiose, cohérent, réglé par une harmonie inflexible. Un peu de l'ineffable nous deviendra plus clair.
Les hommes traversent l'Univers, pareils à ces poussières qui, dans l'or fin du rayon de soleil filtrant par une persienne, dansent un instant puis retombent aux ténèbres. Est-il une manière plus belle et plus noble de remplir la vie que de se gorger les yeux, la tête et le cœur de l'immortel et pourtant si fugitif rayon? Regarder, chercher à comprendre le magnifique et surprenant spectacle de l'Univers, quelle plus haute volupté?
Dans la réalité il y a plus de merveilleux, de romanesque que dans toutes nos pauvres rêveries. Dans la soif de savoir, dans l'élan mystique qui nous jette au cœur profond de l'Inconnu, il y a plus de passion et de douceur que dans toutes les fadaises dont s'alimentent tant de littératures. C'est pourquoi j'ai peut-être tort, après tout, de dire que ce livre n'est pas un roman.
Je tâcherai d'y faire comprendre, avec exactitude et pourtant sans l'appareil ésotérique des techniciens, la révolution apportée par Einstein. Je tâcherai aussi d'en marquer les limites et de préciser ce que, au total, nous pouvons réellement connaître aujourd'hui du monde extérieur vu à travers l'écran translucide de la Science.
Il n'est point de Révolution que bientôt ne suive une réaction, suivant ce rythme sinusoïdal qui semble la démarche éternelle de l'esprit humain. Einstein est à la fois le Sieyès, le Mirabeau et le Danton de la Révolution nouvelle. Mais celle-ci déjà connaît des Marat fanatiques et qui prétendent dire à la Science: «Tu n'iras pas plus loin.»
C'est pourquoi une opposition se dessine contre les prétentions d'apôtres trop zélés du nouvel évangile scientifique. A l'Académie des Sciences, M. Paul Painlevé, avec la force d'un génie mathématique rigoureux, vient de se dresser entre Newton qu'on croyait écrasé et Einstein.
J'examinerai dans mes conclusions la pénétrante critique du géomètre français. Elle m'aidera à situer exactement, dans l'évolution de nos idées, la splendide synthèse einsteinienne que je veux d'abord exposer avec tout l'amour qu'il faut vouer aux choses pour les bien comprendre.
Avec Einstein la Science n'a point achevé sa tâche. Il laisse encore plus d'un «gouffre interdit à nos sondes» et où demain quelque autre esprit supérieur projettera sa clarté.
Ce qui fait l'adorable et hautaine grandeur de la Science, c'est qu'elle est un perpétuel devenir. Dans la sombre forêt du Mystère, la Science est comme une clairière; l'homme élargit sans cesse le cercle qui la borde; mais en même temps et par cela même, il se trouve en contact sur un plus grand nombre de points à la fois avec les ténèbres de l'Inconnu. Dans cette forêt peu d'hommes ont porté la hache étincelante aussi loin qu'Einstein.
En dépit des basses préoccupations qui, de toutes parts, nous harcèlent, parmi tant de misérables contingences, le système d'Einstein apparaît plein de grandeur.
L'actualité est comme cette mousse bruissante et légère qui couronne et masque un instant l'or du vin généreux. Quand tout le bruit fugace qui emplit aujourd'hui nos oreilles sera éteint, la théorie d'Einstein se dressera comme le phare essentiel au seuil de ce triste et petit vingtième siècle.
Charles Nordmann.
EINSTEIN ET L'UNIVERS
CHAPITRE PREMIER
LES MÉTAMORPHOSES DE L'ESPACE ET DU TEMPS
Pour écarter les difficultés mathématiques || Les piliers de la connaissance || Le temps et l'espace absolus, d'Aristote à Newton || Le temps et l'espace relatifs, d'Épicure à Poincaré et Einstein || La relativité classique || Antinomie de l'aberration des étoiles et de l'expérience Michelson.
«Avez-vous lu Baruch?» clamait autrefois le bon La Fontaine tout secoué d'enthousiasme. Aujourd'hui c'est en criant «Avez-vous lu Einstein?» qu'il eût harcelé ses amis.
Mais, tandis que, pour accéder à Spinoza, il n'est que d'entendre un peu de latin, des monstres effrayants montent la garde devant Einstein et s'efforcent par des grimaces horribles d'en défendre l'approche.
Ils s'agitent derrière d'étranges grilles mouvantes, tantôt rectangulaires et tantôt curvilignes qu'on appelle des «coordonnées».
Ils portent des noms monstrueux comme eux-mêmes. Ils s'appellent vecteurs contrevariants et covariants, tenseurs, scalaires, déterminants, vecteurs orthogonaux, symboles à trois indices généralisés, que sais-je....
Tous ces êtres, importés du fond le plus sauvage de la jungle mathématique, s'accolent ou se subdivisent dans une promiscuité étrange, par ces chirurgies étonnantes qu'on appelle l'intégration et la différentiation.
Bref si Einstein est un trésor, un horrible troupeau de reptiles mathématiques en éloigne le curieux. Qu'il y ait en eux, comme dans les gargouilles gothiques, une secrète beauté, c'est certain.
Mais il vaut mieux, armés du fouet éclatant qu'est le verbe, les chasser loin de nous et monter jusqu'aux splendeurs einsteiniennes par le clair et noble escalier du langage français.
Qui est le physicien Einstein? Il n'importe point ici. Sachons seulement qu'il a refusé de signer naguère l'immonde manifeste des 93, ce qui lui a valu les persécutions des pangermanistes.
Au surplus, les vérités géométriques, les découvertes scientifiques ont une valeur intrinsèque qui doit être jugée et pesée objectivement, quel que soit celui qui les a trouvées.
Pythagore eût-il été le dernier des criminels et des malhonnêtes gens, cela n'enlèverait rien à la validité du carré de l'hypoténuse. Un théorème est vrai ou faux, que le nez de son auteur ait la ligne aquiline des fils de Sem, camuse de ceux de Cham ou rectiligne de ceux de Japhet. Est-ce réellement un signe que l'humanité est asymptote à la perfection, que d'entendre dire quelquefois: «Dis-moi quel temple tu fréquentes et je te dirai si ta géométrie est juste»? La Vérité n'a pas besoin d'état-civil. Passons.
Toutes nos notions, toute la science, toute la vie pratique elle-même sont fondées sur la représentation que nous nous faisons des aspects successifs des choses. Notre esprit, aidé par nos sens, classe avant tout celles-ci dans le temps et dans l'espace, qui sont les deux cadres où nous fixons d'abord ce qui nous est sensible dans le monde extérieur. Écrivons-nous une lettre: nous mettons en suscription le lieu et la date. Ouvrons-nous un journal: ce sont ces indications qui y précèdent toutes les dépêches. Il en est de même en tout et pour tout. Le temps et l'espace, la situation des choses et leur époque apparaissent ainsi comme les piliers jumeaux de toute connaissance, les deux colonnes sur lesquelles repose l'édifice de l'entendement humain.
Leconte de Lisle l'a bien senti, lorsque avec sa profonde et philosophique intelligence il écrivait, s'adressant pathétiquement à la divine mort:
Le nombre n'est ici que pour définir quantitativement le temps et l'espace, et Leconte de Lisle a bien exprimé, dans ces vers magnifiques et célèbres, que ce qui existe pour nous dans le vaste monde, ce que nous y savons, voyons, tout l'ineffable et trouble écoulement des phénomènes ne nous présente un aspect défini, une forme précise qu'après avoir traversé ces deux filtres superposés que notre entendement interpose: le temps et l'espace.
Ce qui donne aux travaux d'Einstein leur importance, c'est qu'il a montré, comme nous allons voir, que l'idée que nous nous faisions du temps et de l'espace doit être complètement revisée. Si cela est, la science tout entière,—et avec elle la psychologie,—doit être refondue. Telle est la première partie de l'œuvre d'Einstein. Mais là ne s'est pas bornée l'action de son profond génie. Si elle n'était que cela, elle n'eût été que négative.
Après avoir démoli, après avoir déblayé nos connaissances de ce qu'on croyait en être le piédestal inébranlable et qui n'était, selon lui, qu'un échafaudage fragile masquant les harmonieuses proportions de l'édifice, il a reconstruit. Il a creusé dans le monument de vastes fenêtres qui permettent maintenant de jeter un regard émerveillé sur les trésors qu'il recèle. En un mot, Einstein a d'une part montré, avec une acuité et une profondeur étonnantes, que la base de nos connaissances semble n'être pas ce qu'on a cru et doit être refaite avec un nouveau ciment. D'autre part, il a, sur cette base, renouvelé, rebâti l'édifice démoli dans ses fondements mêmes, et lui a donné une forme hardie dont la beauté et l'unité sont grandioses.
Il me reste maintenant à tâcher de préciser, d'une manière concrète et aussi exacte que possible, ces généralités. Mais je dois insister d'abord sur un point qui a une signification considérable: si Einstein s'était borné à la première partie de son œuvre,—telle que je viens de l'esquisser,—celle qui ébranle les notions classiques de temps et d'espace, il n'aurait point, dans le monde de la pensée, la gloire qui, dès aujourd'hui, auréole son nom.
La chose est d'importance, car la plupart de ceux qui,—en dehors des spécialistes purs,—ont écrit sur Einstein, ont insisté surtout, et souvent exclusivement, sur ce côté en quelque sorte «démolisseur» de son intervention. Or, on va voir qu'à ce point de vue, Einstein n'a pas été le premier ni le seul. Il n'a fait qu'aiguiser davantage et enfoncer un peu plus, entre les blocs mal joints de la science classique, le burin que d'autres avant lui, et surtout le grand Henri Poincaré, y avaient dès longtemps porté. Ensuite il me restera à expliquer, si je puis, le grand, l'immortel titre d'Einstein à la reconnaissance des hommes, qui est, sur cette œuvre critique, d'avoir reconstruit, réédifié par ses propres forces quelque chose de magnifique et de neuf: et ici, sa gloire est sans partage.
La science entière depuis Aristote jusqu'aujourd'hui a été fondée sur l'hypothèse ou, pour mieux dire, sur les hypothèses qu'il existe un temps absolu et un espace absolu. Autrement dit, on a fait reposer nos notions sur l'idée qu'un intervalle de temps et un intervalle spatial entre deux phénomènes donnés sont toujours les mêmes, pour quelque observateur que ce soit, et quelles que soient les conditions d'observation. Par exemple, il ne fût venu à l'esprit de personne, tant que régna la science classique, que l'intervalle de temps, le nombre de secondes qui sépare deux éclipses successives de soleil, pût ne pas être un nombre fixe et identiquement le même pour un observateur placé sur la terre et un observateur placé sur Sirius (la seconde étant d'ailleurs définie pour tous deux par le même chronomètre). De même, personne n'eût imaginé que la distance en mètres de deux objets, par exemple la distance de la Terre au Soleil à un instant donné, mesurée trigonométriquement, pût ne pas être la même pour un observateur placé sur la Terre et un autre placé sur Sirius (le mètre étant d'ailleurs défini pour tous deux par la même règle).
«Il existe, dit Aristote[1], un seul et même temps qui s'écoulera en deux mouvements d'une manière semblable et simultanée; et si ces deux temps n'étaient pas simultanés, ils seraient encore de la même espèce.... Ainsi, pour des mouvements qui s'accomplissent simultanément, il y a un seul et même temps, que ces mouvements soient, ou non, également vites; et cela, lors même que l'un d'eux serait un mouvement local et l'autre une altération.... Par conséquent, les mouvements peuvent être autres et se produire indépendamment l'un de l'autre; de part et d'autre, le temps est absolument le même.» Cette définition aristotélicienne du temps physique date de plus de deux mille ans. Elle représente avec beaucoup de clarté l'idée de temps telle qu'elle a été acceptée jusqu'à ces toutes dernières années par la science classique, en particulier par la mécanique de Galilée et de Newton.
[1] Aristote, Physique, livre IV, chap. xiv.
Pourtant il semble qu'en face d'Aristote, Épicure déjà ait esquissé l'attitude qui plus tard opposera Einstein à Newton. Voici en effet ce qu'écrit Lucrèce exposant la doctrine épicurienne:
«Le temps n'existe pas par lui-même, mais par les objets sensibles seuls, dont résulte la notion de passé, de présent, d'avenir. On ne peut concevoir le temps en soi et indépendamment du mouvement ou du repos des choses[2].»
[2] Lucrèce, De Natura Rerum, liv. I, vers 460 et suiv.
En fait, l'espace ainsi que le temps ont été considérés par la science depuis Aristote comme des données invariables, fixes, rigides, absolues. Newton ne pensait rien dire que d'évident et de banal lorsqu'il écrivait dans son célèbre Scholie: «Le temps absolu, vrai et mathématique pris en soi et sans relation à aucun objet extérieur, coule uniformément par sa propre nature.... L'espace absolu, d'autre part, indépendant par sa propre nature de toute relation à des objets extérieurs, demeure toujours immuable et immobile.»
Toute la science, toute la physique et la mécanique, telles qu'on les enseigne encore aujourd'hui dans les lycées et dans la plupart des universités, sont fondées entièrement sur ces énoncés, sur ces notions d'un temps et d'un espace absolus, pris en soi et sans relation à aucun objet extérieur, indépendants par leur propre nature.
En un mot, et si j'ose employer cette image, le temps de la science classique était semblable à un fleuve portant les phénomènes ainsi que des navires, mais qui ne s'écoule pas moins et d'un même mouvement quand il n'y a pas de navires. Pareillement, l'espace était un peu comme la rive de ce fleuve et insensible aux navires qui passent.
Pourtant, dès l'époque de Newton, dès même celle d'Aristote, un métaphysicien un peu réfléchi aurait pu apercevoir qu'il y avait quelque apparence choquante dans ces définitions.
Le Temps absolu, l'Espace absolu sont de ces «choses en soi» que l'esprit humain a de tout temps considérées comme lui étant directement inaccessibles. Les spécifications d'espace et de temps, ces étiquettes numérotées que nous attachons aux objets du monde extérieur, ainsi qu'on fait dans les gares aux colis pour ne les point perdre (... et la précaution n'est pas toujours suffisante), ces données ne nous sont fournies par nos sens, armés ou non d'instruments, qu'à l'occasion d'impressions concrètes. En aurions-nous la notion en l'absence de corps attachés à ces données, ou plutôt auxquels nous attachons ces données? L'affirmer comme font Aristote, Newton, la science classique, c'est faire une supposition audacieuse, et non nécessairement fondée.
Le seul temps dont nous ayons la notion, en dehors de tout objet, est le temps psychologique si lumineusement scruté par M. Bergson, et qui n'a aucun rapport, que son nom, avec le temps des physiciens, de la science.
C'est en réalité Henri Poincaré, ce grand Français dont la disparition laisse un vide qui ne sera jamais comblé, qui a le mérite d'avoir, avec la plus grande netteté et la plus intelligente hardiesse, soutenu la thèse que le temps et l'espace, tels qu'ils nous sont donnés, ne peuvent être que relatifs.
Quelques textes ici ne seront pas inutiles; ils montreront qu'Henri Poincaré a vraiment le mérite de la plupart des choses qu'on attribue, dans le public, couramment à Einstein. De cette démonstration, le mérite d'Einstein ne sera pas diminué, car il est ailleurs, nous le montrerons.
Voici comment s'exprimait Henri Poincaré, dont l'enveloppe charnelle a péri, il y a des années déjà, mais dont la pensée continue à dominer tous les cerveaux qui réfléchissent, étendant plus loin chaque jour ses ailes triomphales:
«Il est impossible de se représenter l'espace vide.... C'est de là que provient la relativité irréductible de l'espace. Quiconque parle de l'espace absolu emploie un mot vide de sens. Je suis en un point déterminé de Paris, place du Panthéon, par exemple, et je dis: Je reviendrai ici demain. Si on me demande: Entendez-vous que vous reviendrez au même point de l'espace? je serai tenté de répondre: Oui. Et cependant j'aurai tort, puisque d'ici à demain la Terre aura marché, entraînant avec elle la place du Panthéon, qui aura parcouru plus de 2 millions de kilomètres. Et si je voulais préciser mon langage, je n'y gagnerais rien, puisque ces 2 millions de kilomètres, notre globe les a parcourus dans son mouvement par rapport au Soleil, que le Soleil se déplace à son tour par rapport à la Voie Lactée, que La Voie lactée elle-même est sans doute en mouvement sans que nous puissions connaître sa vitesse. De sorte que nous ignorons complètement et que nous ignorerons toujours de combien la place du Panthéon se déplace en un jour. En somme, j'ai voulu dire: Demain, je verrai de nouveau le dôme et le fronton du Panthéon, et s'il n'y avait pas de Panthéon, ma phrase n'aurait aucun sens et l'espace s'évanouirait....»
Poincaré complète ainsi sa pensée:
«Supposons que, dans une nuit, toutes les dimensions de l'Univers deviennent mille fois plus grandes: le monde sera resté semblable à lui-même, en donnant au mot de similitude le même sens qu'au troisième livre de géométrie. Seulement, ce qui avait un mètre de long mesurera désormais un kilomètre, ce qui était long d'un millimètre deviendra long d'un mètre. Ce lit où je suis couché, et mon corps lui-même se seront agrandis dans la même proportion. Quand je me réveillerai le lendemain matin, quel sentiment éprouverai-je en présence d'une aussi étonnante transformation? Eh bien! je ne m'apercevrai de rien du tout. Les mesures les plus précises seront incapables de me rien révéler de cet immense bouleversement, puisque les mètres dont je me servirai auront varié précisément dans les mêmes proportions que les objets que je chercherais à mesurer. En réalité, ce bouleversement n'existe que pour ceux qui raisonnent comme si l'espace était absolu. Si j'ai raisonné un instant comme eux, c'est pour mieux faire voir que leur façon de voir implique contradiction.»
On peut facilement étendre ce raisonnement de Poincaré. Si tous les objets de l'Univers devenaient par exemple mille fois plus hauts, et mille fois moins larges, nous n'aurions non plus aucun moyen de nous en apercevoir, car nous-mêmes et nos rétines et les mètres dont nous nous servirions pour mesurer les objets, serions déformés en même temps et de même. Bien plus, si tous les objets de l'Univers subissaient une déformation spatiale absolument irrégulière, si un génie invisible et tout-puissant le distordait d'une manière quelconque, en tirant sur lui comme sur une masse de caoutchouc, nous n'aurions aucun moyen de le savoir. Rien ne tend mieux à prouver que l'espace est relatif, et que nous ne pouvons concevoir l'espace en dehors des objets qui servent à le mesurer. Pas de mètre, pas d'espace.
Poincaré a poussé si loin ses déductions dans ce domaine, qu'il en est arrivé à affirmer que la rotation même de la Terre autour du Soleil n'est qu'une hypothèse plus commode que l'hypothèse inverse, mais non point plus vraie, car elle impliquerait sans cela l'existence d'un espace absolu.
Certains polémistes peu avertis ont même,—on s'en souvient,—voulu tirer argument de cette démonstration poincariste pour justifier la condamnation de Galilée. Rien de plus amusant que les efforts faits alors par l'illustre mathématicien-philosophe pour se défendre de ce grief, et, ma foi, il faut bien reconnaître que la défense ne fut pas parfaitement convaincante. C'est qu'on ne fait pas à l'agnosticisme sa part.
Poincaré est donc à la tête de ceux pour qui l'espace n'est rien qu'une propriété que nous donnons aux objets. Pour lui, la notion que nous en avons n'est, si j'ose dire, que la résultante héréditaire des tâtonnements sensuels par quoi nous essayons péniblement d'embrasser le monde extérieur à un moment donné.
Après l'Espace, le Temps. A cet égard aussi les objections du relativisme philosophique étaient depuis longtemps dans l'air. Mais c'est Poincaré qui leur a donné leur forme définitive. Nous ne le suivrons pas dans ses lumineuses démonstrations qui sont bien connues.
Retenons-en seulement que, pour le temps comme pour l'espace, on peut supposer un rétrécissement ou un allongement de l'échelle, auquel nous serions tout à fait insensibles et qui semble montrer l'impossibilité, pour les hommes, de concevoir un temps absolu.
Si quelque génie malicieux s'amusait une nuit à rendre mille fois plus lents tous les phénomènes de l'Univers, nous n'aurions aucun moyen de nous en apercevoir à notre réveil et le monde ne nous paraîtrait pas changé. Et pourtant chacune des heures marquées par nos horloges durerait mille fois plus qu'une des heures anciennes. Les hommes vivraient mille fois plus longtemps, et n'en sauraient rien, car leurs sensations seraient ralenties d'autant.
Lorsque Lamartine s'écriait: «O temps, suspends ton vol!» il proférait une chose charmante, mais qui n'était peut-être qu'une niaiserie. Si le temps avait obéi à cette objurgation passionnée, à cet ordre,—les poètes ne doutent de rien!—Lamartine et Elvire n'eussent pu le savoir ni en jouir. Le batelier du lac du Bourget qui promenait les deux amoureux, n'eût réclamé le paiement d'aucune heure supplémentaire; et pourtant il aurait, de ses rames, frappé bien plus longtemps les flots harmonieux.
Si j'ose résumer tout cela d'un mot moins paradoxal qu'il ne semblera à première vue: aux yeux des relativistes ce sont les mètres qui créent l'espace, les horloges qui créent le temps.
Tout cela, Poincaré et d'autres l'ont soutenu bien longtemps avant Einstein, et c'est faire tort à la vérité que de le lui attribuer. Je sais bien qu'on ne prête qu'aux riches, mais c'est aussi faire injure aux riches que de leur prêter ce dont ils n'ont que faire, ce dont ils n'ont pas besoin pour être riches.
Il est d'ailleurs un point où Galilée et Newton, tout en croyant à l'existence de l'espace et du temps absolus, admettaient déjà une certaine relativité. C'est l'impossibilité, reconnue par eux, de distinguer les uns des autres, les mouvements de translation uniformes; c'est l'équivalence de toutes ces translations; c'est par conséquent l'impossibilité de mettre en évidence une translation absolue.
C'est cela qu'on appelle le principe de relativité classique.
Un fait imprévu a contribué à porter ces questions sur un plan nouveau, et amené Einstein à donner une extension inattendue au principe de relativité de la mécanique classique: c'est le résultat d'une expérience célèbre de Michelson, qu'il importe de décrire brièvement.
On sait que les rayons lumineux se propagent dans le vide interastral; c'est ce qui nous permet d'apercevoir les étoiles. Cela a conduit depuis longtemps les physiciens à admettre que ces rayons se propagent dans un milieu dénué de masse et d'inertie, infiniment élastique, n'opposant aucune résistance au déplacement des corps matériels qu'il pénètre de toute part. Ce milieu les savants l'appellent l'éther. La lumière s'y propage à la manière des ondes dans l'eau, avec une vitesse voisine de 300 000 kilomètres par seconde et que je désignerai abréviativement par la lettre V.
La Terre circule autour du Soleil dans un véritable océan d'éther et avec une vitesse de translation d'environ 30 kilomètres par seconde. A cet égard la rotation de la Terre peut être négligée car elle imprime à la surface terrestre dans l'éther une vitesse inférieure à 2 kilomètres par seconde.
Depuis longtemps la question suivante s'est posée: la Terre entraîne-t-elle, dans son mouvement orbital autour du Soleil, l'éther qui est à son contact, de même qu'une éponge lancée d'une fenêtre emporte avec elle l'eau dont elle est imbibée? L'expérience a montré, ou plutôt les expériences ont montré (elles sont variées et concordantes) que la question doit être résolue par la négative.
Cela a été établi d'abord par les observations astronomiques. Il existe en astronomie un phénomène bien connu, découvert par Bradley, et qu'on appelle l'aberration. Il consiste en ceci: lorsqu'on observe une étoile avec une lunette, l'image de l'étoile ne se forme pas exactement dans la direction de la visée. En voici la raison: pendant que les rayons lumineux de l'étoile, qui ont pénétré dans la lunette, parcourent celle-ci dans sa longueur, la lunette s'est légèrement déplacée, entraînée qu'elle est par le mouvement de la Terre. Au contraire, le rayon lumineux dans la lunette n'a pas participé à ce mouvement, ce qui cause précisément la petite déviation appelée aberration. Preuve que le milieu dans lequel se propage la lumière, l'éther qui remplit la lunette et entoure la Terre, ne participe pas au mouvement de celle-ci.
Beaucoup d'autres expériences ont établi d'une manière aussi nette que l'éther, qui sert de véhicule aux ondes lumineuses n'est pas entraîné par la Terre dans son mouvement. Mais alors, puisque la Terre est mouvante dans l'éther, puisqu'elle y avance comme un navire dans un lac immobile (et non pas comme un flotteur porté par le courant d'un fleuve), il doit être possible de mettre en évidence cette vitesse de la Terre par rapport à l'éther.
Un des moyens qu'on peut imaginer dans ce dessein est le suivant. On sait que la Terre tourne de l'Ouest à l'Est sur elle-même et dans le même sens autour du Soleil. Par conséquent, au milieu de la nuit, la révolution de la Terre autour du Soleil l'entraîne dans un sens tel que Paris se déplace, d'Auteuil vers Charenton, avec une vitesse d'environ 30 kilomètres par seconde (le jour, c'est le contraire, Paris se déplace autour du Soleil, de Charenton vers Auteuil). Supposons donc qu'au milieu de la nuit un physicien placé à Auteuil envoie un signal lumineux; le physicien de Charenton (ceci, encore un coup, est une hypothèse), qui mesure la vitesse de ce rayon lumineux, devra trouver qu'elle est égale à V − 30 kilomètres.
En effet, par suite du mouvement de la Terre, Charenton fuit devant le rayon lumineux. Par conséquent, puisque celui-ci se propage dans un milieu, dans un éther qui ne participe pas au mouvement de la Terre, l'observateur de Charenton devra trouver que ce rayon lui arrive avec une vitesse plus faible que si la Terre était immobile. C'est un peu comme un train rapide devant lequel fuirait un observateur à bicyclette; si le train rapide fait 30 mètres à la seconde, si le cycliste fait 3 mètres à la seconde, la vitesse du train par rapport au cycliste sera 30 − 3 = 27 mètres à la seconde; elle serait nulle si train et cycliste avaient même vitesse.
Au contraire, si le cycliste va à la rencontre du train, la vitesse du train par rapport à lui sera 30 + 3 = 33 mètres par seconde. Pareillement, si c'est le physicien de Charenton, qui au milieu de la nuit, envoie un signal lumineux, et le physicien d'Auteuil qui le reçoive, celui-ci devra trouver que ce rayon lumineux possède une vitesse égale à V + 30 kilomètres.
On peut encore exprimer autrement tout cela. Supposons qu'il y ait exactement 12 kilomètres entre l'observateur d'Auteuil et celui de Charenton. Pendant que le rayon lumineux venu d'Auteuil se propage vers Charenton, Charenton fuit devant lui d'une petite quantité. Par conséquent ce rayon aura parcouru un peu plus de 12 kilomètres avant d'arriver au physicien de Charenton. Il aura au contraire parcouru un peu moins dans le cas contraire.
Or, appliquant une belle idée française de Fizeau, le physicien américain Michelson a réussi à mesurer avec une grande précision les longueurs, au moyen des franges d'interférence de la lumière. Toute variation de la longueur mesurée se traduit par un déplacement d'un certain nombre de ces franges que l'on peut observer facilement avec un microscope.
Imaginons maintenant qu'au lieu d'expérimenter entre Charenton et Auteuil, nos deux physiciens opèrent dans les limites d'un laboratoire. Imaginons qu'ils mesurent, au moyen des franges d'interférence, l'espace parcouru par un rayon lumineux produit dans ce laboratoire, et selon qu'il s'y propage dans le sens du mouvement de la Terre ou dans le sens contraire. Nous aurons ainsi, réduite à ses éléments essentiels, et simplifiée pour la clarté de cet exposé, la célèbre expérience de Michelson. On devrait trouver de la sorte une différence facilement mesurable avec l'appareil précis utilisé.
Eh bien! pas du tout. Contrairement à toute attente, et à la profonde stupéfaction des physiciens, on a trouvé que la lumière se propage rigoureusement avec la même vitesse lorsque celui qui la reçoit s'éloigne d'elle avec la vitesse de la Terre, ou au contraire lorsqu'il s'en rapproche avec cette vitesse. Conséquence inéluctable: l'éther participe au mouvement de la Terre. Mais nous venons de voir que d'autres expériences, non moins précises, avaient établi que l'éther ne participe pas au mouvement de la Terre.
C'est de cette contradiction, du choc de ces deux faits inconciliables et pourtant réels, qu'est sortie la splendide synthèse d'Einstein, de même que, fulgurante, l'étincelle jaillit du choc de deux silex heurtés.
CHAPITRE DEUXIÈME
LA SCIENCE DANS UNE IMPASSE
La vérité scientifique et les mathématiques || Le rôle exact d'Einstein || L'expérience de Michelson, nœud gordien de la Science || Les hésitations de Poincaré || L'hypothèse étrange mais nécessaire de Fitzgerald-Lorentz || La contraction des corps en mouvement || Difficultés philosophiques et physiques.
Ce serait folie de prétendre pénétrer dans les moindres recoins des nouvelles théories d'Einstein, sans le secours de la tarière mathématique. Je crois pourtant qu'on peut donner au moyen du langage ordinaire, c'est-à-dire par des images et des raisonnements verbaux, une idée assez approchée de ces choses dont la complexité se modèle d'habitude sur le jeu infiniment subtil et souple des formules et des équations analytiques.
Après tout, la mathématique n'est pas, n'a jamais été et ne sera jamais autre chose qu'un langage particulier, une sorte de sténographie de la pensée et du raisonnement. Son objet est de franchir les méandres compliqués des raisonnements superposés, avec une rapide hardiesse que ne connaissent pas la lourdeur et la lenteur mérovingiennes des syllogismes exprimés par des mots.
Si paradoxal que cela puisse paraître à ceux qui considèrent les mathématiques comme étant par elles-mêmes une source de découverte, on n'en sortira jamais autre chose que ce qui était implicitement inhérent aux données jetées dans la double mâchoire des équations. Pour employer une image triviale qu'on me pardonnera, j'espère, les raisonnements mathématiques sont tout à fait analogues à ces machines qu'on voit à Chicago—à ce que disent les hardis explorateurs de l'Amérique,—à l'entrée desquelles on met des bestiaux vivants et qui restituent à la sortie d'odorantes charcuteries. Nul parmi les spectateurs n'eût pu ou du moins n'eût voulu tenter d'absorber l'animal vivant, tandis que, sous la forme où il se présente à la sortie, il est immédiatement assimilable et digéré. Pourtant ceci n'est que cela convenablement trituré. Ce n'est pas autre chose que font les mathématiques. Elles extraient des données toute leur substantifique moelle, par le moyen d'une machinerie merveilleuse. Celle-ci est efficace là où les rouages du raisonnement verbal, là où l'imbrication des syllogismes seraient bientôt arrêtés et coincés.
Faut-il en conclure que les mathématiques ne sont pas, à proprement parler, des sciences? Faut-il du moins en conclure qu'elles ne sont sciences qu'autant qu'elles se modèlent sur la réalité et se nourrissent de données expérimentales, puisque «l'expérience est la source unique de la vérité», et puisque la science est la recherche de la vérité? Je me garderai bien de répondre à cela, étant de ceux qui pensent que tout est matière de science. Cette question n'en méritait pas moins d'être posée, car on a peut-être un peu trop tendance chez nous à considérer une éducation purement mathématique comme constituant une éducation scientifique. Rien n'est plus faux. La mise en équations n'est par elle-même qu'une forme abréviative donnée au langage et à la pensée logique. Elle ne peut rien nous apprendre intrinsèquement sur le monde extérieur; elle ne peut nous renseigner sur lui qu'autant qu'elle s'y lie docilement. C'est de la mathématique surtout qu'on pourrait dire: naturæ non imperatur nisi parendo.
Les théories d'Einstein ne sont-elles, comme certaines personnes mal informées l'ont prétendu, qu'un jeu de formules transcendantes (et j'entends ce mot à la fois dans le sens des mathématiciens et dans celui des philosophes)? Si elles n'étaient qu'un vertigineux édifice mathématique où les x enroulent leurs volutes en arabesques étourdissantes, où les intégrales au col de cygne dessinent des motifs Louis XV, elles ne seraient pas, elles ne seraient guère intéressantes pour le physicien, pour celui qui regarde et examine la nature des choses avant d'en disserter. Elles ne seraient, comme toutes les métaphysiques cohérentes, qu'un système plus ou moins plaisant, mais dont on ne peut démontrer l'exactitude ou la fausseté.
La théorie d'Einstein est bien autre chose, bien plus que cela. C'est sur les faits qu'elle se fonde. C'est aussi à des faits, à des faits nouveaux qu'elle aboutit. Jamais une doctrine philosophique, jamais non plus une construction mathématique purement formelle n'ont fait découvrir des phénomènes nouveaux. Parce qu'elle en a fait découvrir la théorie d'Einstein n'est ni l'une ni l'autre. Là est ce qui différencie la théorie scientifique de la spéculation pure et qui fait, j'ose le dire, la supériorité de celle-là.
Ainsi qu'un audacieux pont suspendu jeté à travers l'abîme, la synthèse d'Einstein s'appuie d'un côté sur des phénomènes expérimentaux, pour aboutir, par son côté opposé, à d'autres phénomènes jusque-là insoupçonnés, et que grâce à elle on découvre. Entre ces deux solides piliers phénoménaux, le raisonnement mathématique est l'enchevêtrement merveilleux des milliers de croisillons d'acier qui dessinent l'architecture élégante et translucide du pont. Il est cela, il n'est que cela. Mais l'agencement des poutrelles et des croisillons pourrait être différent et le pont réunir quand même,—avec moins de gracieuse légèreté peut-être,—les faits où il s'arc-boute des deux parts.
Bref le raisonnement mathématique n'est en physique qu'une induction, dans un langage particulier, entre des prémisses expérimentales et des conclusions justiciables de l'expérience et vérifiables par elle. Or il n'est point de langage qui,—tant bien que mal,—ne puisse être traduit dans un autre langage. Les hiéroglyphes eux-mêmes ont dû céder devant Champollion. C'est pourquoi, finalement, je suis persuadé que les difficultés mathématiques des théories d'Einstein seront un jour remplacées par un jeu de formules plus simples et plus accessibles. C'est pourquoi je crois aussi qu'il est dès maintenant possible de donner, au moyen du langage ordinaire, une idée peut-être un peu superficielle mais pourtant exacte dans les grandes lignes, de ce merveilleux monument einsteinien où toutes les conquêtes de la science viennent se classer, ainsi qu'en un admirable musée, selon un ordre nouveau et d'une splendide unité. Essayons.
On peut récapituler très brièvement de la manière suivante ce qui a été l'origine, la tranchée de départ du système d'Einstein: 1o l'observation des astres prouve que l'espace interplanétaire n'est pas vide, mais est occupé par un milieu particulier, l'éther, dans lequel se propagent les ondes lumineuses; 2o l'existence de l'aberration et d'autres phénomènes semble prouver que l'éther n'est pas entraîné par la Terre dans son mouvement circumsolaire; 3o l'expérience de Michelson semble prouver au contraire que l'éther est entraîné par la Terre dans ce mouvement.
Cette contradiction entre des faits également bien établis a fait pendant des années le désespoir et l'étonnement des physiciens. Elle fut le nœud gordien de la science. On chercha longtemps et en vain à le dénouer, jusqu'à ce qu'Einstein, d'un seul coup de son esprit merveilleusement aiguisé, le tranche net.
Pour comprendre comment cela se fit,—et là est le point vital de tout le système,—il nous faut revenir un peu sur les conditions exactes de la fameuse expérience de Michelson.
J'ai indiqué dans le chapitre précédent que Michelson s'est proposé d'étudier la vitesse de propagation d'un rayon lumineux que l'on produit au laboratoire et qui est dirigé de l'Est à l'Ouest ou de l'Ouest à l'Est, c'est-à-dire suivant la direction même où la Terre se meut à la vitesse de 30 kilomètres environ par seconde, dans son mouvement autour du Soleil.
Mais en réalité l'expérience de Michelson est un peu plus compliquée que cela et il importe d'y revenir.
En fait, elle revient à disposer dans le laboratoire quatre miroirs équidistants et se faisant face deux à deux. Deux des miroirs opposés sont placés suivant la direction Est-Ouest, direction du mouvement de translation de la Terre autour du Soleil; les deux autres sont placés suivant la direction perpendiculaire à la précédente, la direction Nord-Sud. On produit deux rayons lumineux se propageant respectivement suivant les directions des deux couples de miroirs. Le rayon provenant du miroir Est va au miroir Ouest, est réfléchi par lui et revient au miroir Est. Ce rayon est amené à coïncider avec celui qui a fait le trajet aller et retour entre les miroirs Nord-Sud; il interfère avec lui en produisant des franges d'interférences, qui, ainsi que je l'ai expliqué, permettent de connaître exactement la différence des trajets parcourus par les deux rayons entre les miroirs. S'il se produisait une variation de la différence entre ces deux distances, on verrait immédiatement se déplacer un certain nombre des franges d'interférences, ce qui fournirait la grandeur de cette variation.
Et maintenant une analogie va nous faire comprendre ce qui se passe. Supposons qu'un vent violent et régulier Est-Ouest souffle au-dessus de Paris et qu'un avion se propose de faire le trajet d'Auteuil à Charenton et retour sans escale, c'est-à-dire contre le vent à l'aller et avec le vent en poupe au retour. 12 kilomètres séparent Auteuil de Charenton. Supposons qu'en même temps un autre avion identique au premier se propose de franchir, en partant également d'Auteuil, un trajet aller et retour entre Auteuil et un point situé à 12 kilomètres au Nord. De la sorte ce deuxième avion aura, à l'aller comme au retour, un trajet perpendiculaire à la direction du vent. Ces deux avions étant supposés partir en même temps et faire demi-tour instantanément, seront-ils de retour en même temps à Auteuil, et sinon, quel est celui qui aura fini son double parcours le premier?
S'il n'y avait pas de vent, il est clair que les deux avions seraient de retour en même temps, puisqu'ils parcourent tous deux 24 kilomètres à la même vitesse, que je suppose, pour fixer les idées, de 200 mètres à la seconde.
Mais il n'en sera plus de même s'il y a du vent soufflant dans la direction Est-Ouest, ainsi que je l'ai admis. Il est facile de voir, dans ces conditions, que l'avion qui va d'Auteuil à Charenton et retour aura fini son parcours plus tard que l'autre avion. En effet, imaginons, pour fixer les idées, que le vent ait la même vitesse que l'avion (200 mètres par seconde). L'avion, qui va perpendiculairement au vent, sera déporté vers l'Ouest de 12 kilomètres, pendant qu'il franchit lui-même 12 kilomètres du Sud au Nord. Il aura donc franchi dans le vent une distance réelle égale à la diagonale d'un carré de 12 kilomètres de côté. Au lieu de franchir 24 kilomètres, il en aura franchi réellement 34 dans le vent, qui est le milieu par rapport auquel il possède sa vitesse.
En revanche, l'avion qui part d'Auteuil vers l'Est n'arrivera jamais à Charenton, puisqu'il est déporté vers l'Ouest, chaque seconde, d'une quantité égale à celle dont il progresse vers l'Est; il restera sur place; il lui faudrait donc franchir dans le vent une distance infinie pour effectuer son voyage.
Si, au lieu de supposer au vent une vitesse égale à celle de l'avion (ce qui est un cas limite choisi pour la clarté de ma démonstration), je lui avais attribué une vitesse plus faible, on trouverait pareillement, et par un calcul très simple, que, pour effectuer son trajet aller et retour, l'avion Nord-Sud parcourt dans le vent un espace moins grand que l'avion Est-Ouest.
Remplaçons nos avions par des rayons lumineux, le vent par l'éther, et nous aurons presque exactement les conditions de l'expérience de Michelson. Un courant d'éther, un vent d'éther (puisque celui-ci a été antérieurement reconnu immobile par rapport à la translation terrestre), va de l'un à l'autre de nos deux miroirs Est-Ouest. Donc le rayon lumineux qui fait le trajet aller et retour entre ces deux miroirs doit parcourir dans l'éther un trajet plus long que le rayon qui fait le trajet aller et retour entre les miroirs Nord-Sud. Comment mettre en évidence cette différence, assurément très faible, puisque la Terre a une vitesse infime par rapport à celle de la lumière, 10 000 fois plus petite?
Il y a pour cela un moyen très simple, un de ces artifices ingénieux chers à la malice des physiciens, un de ces procédés différentiels dont l'élégance et la netteté donnent toute sécurité.
Supposons que mes quatre miroirs soient collés, placés rigidement sur un plateau un peu semblable aux tourniquets numérotés des loteries foraines. Supposons qu'on puisse faire tourner ce plateau à volonté, sans choc et sans le déformer, ce qui est aisé si on le fait flotter sur un bain de mercure. J'observe à la loupe les franges d'interférences immobiles qui définissent la différence des trajets parcourus par mes rayons lumineux Nord-Sud et Est-Ouest. Puis, sans perdre de l'œil ces franges, je fais tourner mon plateau d'un quart de cercle. Cette rotation fait que les miroirs qui étaient Est-Ouest deviennent Nord-Sud et réciproquement. Le double trajet parcouru par le rayon lumineux Nord-Sud est devenu Est-Ouest, s'est donc soudain allongé; au contraire, le double trajet du rayon Est-Ouest est devenu Nord-Sud, s'est donc soudain raccourci. Les franges d'interférences, qui indiquent la différence de longueur de ces deux trajets, laquelle a soudain beaucoup varié, doivent nécessairement s'être déplacées, et d'une grande quantité, ainsi que le montre le calcul.
Eh bien! pas du tout. On constate une immobilité complète des franges. Elles n'ont pas plus bougé que souches. C'est renversant, révoltant même, car enfin la précision de l'appareil est telle que, si la Terre n'avançait dans l'éther qu'à la vitesse de 3 kilomètres par seconde (dix fois moins que sa vitesse réelle!), le déplacement des franges serait suffisant pour manifester cette vitesse.
Lorsque fut connu le résultat négatif de cette expérience, ce fut presque de la consternation parmi les physiciens. Puisque l'éther,—cela avait été prouvé par l'observation,—n'était pas entraîné par la Terre, comment était-il possible qu'il se comportât comme s'il avait participé à son mouvement? Casse-tête chinois, qui ébranla mainte tête chenue et vénérable.
Il fallait à toute force sortir de cette inexplicable contradiction, venger ce paradoxal pied de nez que les faits décochaient aux prévisions les plus sûres du calcul. C'est ce qu'on fit. Comment? Mais par la méthode habituelle en pareil cas, par des hypothèses supplémentaires. Les hypothèses sont dans la science une sorte de mortier souple et rapidement durci à l'air libre, qui permet d'une part de joindre les blocs disparates d'un édifice, d'autre part de remplir par du faux, que le passant superficiel prendra demain pour de la pierre de taille, les brèches creusées dans la muraille par les projectiles adventices. Et c'est parce que les hypothèses sont dans la science quelque chose qui ressemble à cela, que les meilleures théories scientifiques sont celles dont l'assemblage comporte le moins d'hypothèses.
Mais j'ai tort d'écrire, à propos de tout ceci, ce mot au pluriel, car il se trouva finalement qu'une seule et unique hypothèse permettait, à l'exclusion de toute autre, d'expliquer convenablement le résultat négatif de l'expérience de Michelson. Ceci d'ailleurs est rare et remarquable, car en général les hypothèses poussent comme des champignons dans chaque coin un peu sombre de la science, et on en trouve tout de suite vingt différentes pour expliquer la moindre incertitude.
Cette hypothèse unique, qui semblait pouvoir tirer les physiciens de l'embarras où les avait plongés Michelson, fut imaginée d'abord par le savant irlandais Fitzgerald, puis reprise et fécondée par l'illustre Hollandais Lorentz, le Poincaré néerlandais, qui est un des plus merveilleux cerveaux de ce temps, et sans qui Einstein n'aurait pas plus existé que Képler sans Copernic et Tycho-Brahé.
Voici maintenant en quoi consiste l'hypothèse aussi simple qu'étrange de Fitzgerald-Lorentz....
Mais auparavant, une remarque importante s'impose. Beaucoup de bons esprits ont,—d'ailleurs après coup,—prétendu que le résultat de l'expérience de Michelson ne pouvait être que négatif a priori. En effet,—ont-ils raisonné, ou à peu près,—le principe de relativité classique, celui que Galilée et Newton connaissaient déjà, veut qu'il soit impossible à un observateur participant à la translation uniforme d'un véhicule, de mettre en évidence, par des faits observés sur le véhicule, les mouvements de celui-ci. Cela fait que quand deux navires ou deux trains se croisent[3], il est impossible aux passagers de connaître lequel est en mouvement, lequel va plus vite: tout ce qu'ils peuvent connaître, c'est la vitesse de l'un des trains ou des navires par rapport à l'autre. On ne peut connaître que des vitesses relatives.
[3] On suppose, bien entendu, qu'il n'y a ni roulis ni tangage dans le navire ni trépidation dans le train.
Or, ont dit les bons esprits auxquels je fais allusion, si l'expérience de Michelson avait donné un résultat positif, elle nous aurait fait connaître la vitesse absolue de la Terre dans l'espace. Ce résultat aurait été contraire au principe de relativité de la philosophie et de la mécanique classiques qui est une vérité d'évidence. Donc, il ne pouvait être que négatif.
Il y a là, ainsi qu'on va voir, une ambiguïté et,—si j'ose ainsi m'exprimer,—une erreur de raisonnement à laquelle il semble que n'aient pas échappé certains physiciens remarquables et notamment le professeur Eddington, qui est pourtant le plus averti des einsteiniens anglais. Par lui furent organisées les observations de l'éclipse du 29 mai 1919 qui ont fourni, comme nous verrons, la vérification la plus frappante des inductions d'Einstein.
Tout d'abord, si l'expérience de Michelson avait donné un résultat positif, ce qu'elle aurait mis en évidence, c'est la vitesse de la Terre par rapport à l'éther. Mais, pour que cette vitesse fût une vitesse absolue, il faudrait que l'éther fût identique à l'espace. Rien n'est moins certain que cette identité, et la preuve, c'est que nous pouvons très bien concevoir entre deux astres un espace, ou, pour mieux dire, une discontinuité, vide d'éther même, et à travers laquelle ne se propagerait ni la lumière, ni aucune des formes d'énergie connues.
Lorsque Eddington dit qu'«il est légitime et rationnel», qu'il est «inhérent aux lois fondamentales de la nature», qu'on ne puisse déceler un mouvement des objets par rapport à l'éther, que cela est certain, «même si les preuves expérimentales sont insuffisantes», il affirme une chose qui ne serait évidente que si l'identité de l'espace et de l'éther était elle-même évidente. Or, il n'en est rien. Si l'expérience de Michelson avait donné un résultat positif, si on avait décelé une vitesse de la Terre, aurait-on décelé une vitesse par rapport à un point de repère absolu? Nullement. Il se peut, il se pourrait très bien que l'Univers stellaire que nous connaissons, avec ses centaines de milliers de Voies lactées que la lumière ne franchit qu'en des millions d'années, il se peut que tout cela soit le contenu d'une bulle d'éther qui roule dans un abîme vide d'éther et semé çà et là d'autres univers, d'autres gouttes d'éther gigantesques dont rien, dont aucun rayon lumineux ne nous viendra jamais. Ceci n'est en tout cas pas inconcevable. Mais alors, l'éther ayant les propriétés que lui attribue la physique classique, si le mouvement de la Terre par rapport à lui avait pu être décelé, ce n'est pas un mouvement absolu qu'on aurait connu, c'est tout au plus un mouvement par rapport au centre de gravité de notre Univers à nous, point de repère lui-même irréductible à un autre absolument immobile. Le principe de relativité classique n'aurait été en rien choqué.
Le résultat de l'expérience de Michelson pouvait donc, dans ces hypothèses, être aussi bien positif que négatif sans heurter,—quoi qu'on en ait dit,—le relativisme classique. En fait, il s'est trouvé négatif, et voilà tout: l'expérience a prononcé, mais elle seule pouvait prononcer.
Ces nuances n'ont pas échappé à Poincaré, qui disait notamment: «Par véritable vitesse de la Terre, j'entends, non sa vitesse absolue, ce qui n'a aucun sens, mais sa vitesse par rapport à l'éther....» L'existence possible d'une vitesse décelable par rapport à l'éther n'apparaissait donc nullement comme une absurdité à celui qui a écrit: «Quiconque parle de l'espace absolu emploie un mot vide de sens.»
Il est assez digne de remarque que, dans tout ceci, la démarche de la pensée de Poincaré a marqué quelque hésitation. A propos d'expériences analogues à celles de Michelson, il s'écriait: «Je sais ce qu'on va dire, ce n'est pas la vitesse absolue qu'on mesure, c'est la vitesse par rapport à l'éther. Que cela est peu satisfaisant! Ne voit-on pas que du principe ainsi compris on ne pourra plus rien tirer?» D'où il ressort que Poincaré en dépit de lui-même, et tout en s'en défendant, avait une tendance à trouver «peu satisfaisante» la discrimination de l'espace et de l'éther.
J'avoue que l'argument de Poincaré ne me paraît pas, lui non plus, tout à fait satisfaisant, ou du moins convaincant. «La nature, a dit Fresnel, ne se soucie pas des difficultés analytiques.» Je pense qu'elle ne se soucie pas non plus des difficultés philosophiques ou purement physiques. Penser qu'une conception des phénomènes est d'autant plus adéquate au réel qu'elle est plus «satisfaisante», qu'elle s'adapte mieux aux infirmités de notre esprit, n'est peut-être pas un criterium inattaquable. Sinon il faudrait bon gré mal gré en arriver à penser que l'Univers est nécessairement adapté aux catégories de notre esprit, qu'il est constitué de manière à nous causer le moins de perplexités possibles. Ce serait, par un chemin détourné, un étrange retour au finalisme et à l'orgueil anthropocentriques. Le fait que les voitures n'y passent pas, et que les passants y doivent rebrousser chemin, ne prouve pas qu'il n'y ait pas des impasses dans nos villes. Il y a peut-être et même probablement aussi des impasses dans l'Univers considéré comme objet de science.
Assurément on peut me répondre: ce n'est pas l'Univers qui est adapté à notre esprit, mais au contraire celui-ci à celui-là par l'évolution nécessaire due au frottement réciproque de l'un sur l'autre. Notre esprit doit évoluer en s'adaptant au mieux à l'Univers, c'est-à-dire de sorte que le principe de moindre action de Fermat,—qui est peut-être le plus profond principe du monde physique, biologique et moral,—soit réalisé. Et alors les conceptions les plus économiques, les plus simples sont bien les plus adéquates à la réalité.
Oui, mais qu'est-ce qui prouve que notre évolution conceptuelle est achevée et parfaite, surtout quand il s'agit de phénomènes auxquels notre organisme est insensible?
L'expérience, seule, a prouvé et était capable de prouver qu'on ne peut mesurer la vitesse d'un objet par rapport à l'éther. Mais enfin, elle l'a bien prouvé.
Après tout, puisqu'il est évidemment dans la nature des choses que nous ne puissions déceler de mouvement absolu, n'est-ce pas parce que la vitesse de la Terre par rapport à l'éther constitue une vitesse absolue, que nous n'avons pu la déceler? Peut-être, mais c'est indémontrable. Si oui,—mais il n'est pas sûr que ce soit oui,—c'est finalement l'expérience, seule source de la vérité, qui tend à nous montrer ainsi, indirectement, que l'éther est réellement identique à l'espace. En ce cas un espace vide d'éther, ou dans lequel rouleraient des bulles d'éther, cesse d'être concevable, et il n'existe rien qu'une masse unique d'éther où baignent les astres. En un mot, le résultat négatif de l'expérience de Michelson ne pouvait être déduit a priori de l'identité problématique de l'espace absolu et de l'éther. Mais ce résultat négatif ne permet pas d'exclure a posteriori cette identité.
Il importe que nous revenions maintenant à nos moutons, je veux dire à l'hypothèse de Fitzgerald-Lorentz qui explique le résultat de l'expérience de Michelson, et qui fut en quelque sorte le tremplin d'où Einstein prit son essor. Voici cette hypothèse.
Le résultat de l'expérience est celui-ci: quand le parcours aller et retour d'un rayon lumineux entre deux miroirs est transversal au mouvement de la Terre à travers l'éther, et qu'on le rend parallèle à ce mouvement, on devrait constater que ce parcours a été allongé. Or, on constate qu'il n'en est rien. Cela provient, d'après Fitzgerald et Lorentz, de ce que les deux miroirs se sont rapprochés dans le second cas, autrement dit de ce que le support sur lequel ils sont fixés s'est contracté dans le sens du mouvement de la Terre, et s'est contracté d'une quantité qui compense exactement l'allongement, qu'on aurait dû observer, du parcours des rayons lumineux.
Or, en refaisant l'expérience avec les appareils les plus variés, on constate que le résultat est toujours le même (aucun déplacement des franges). Donc, la nature de la matière formant l'instrument (métal, verre, pierre, bois, etc.) n'a aucune influence. Donc, tous les corps subissent, dans le sens de leur vitesse par rapport à l'éther, un raccourcissement égal, une contraction pareille. Cette contraction est telle qu'elle compense précisément l'allongement du trajet des rayons lumineux entre deux points de la matière. Cette contraction est donc d'autant plus grande que la vitesse des corps par rapport à l'éther est plus grande.
Telle est l'explication proposée par Fitzgerald. Elle sembla au premier abord tout à fait étrange et arbitraire, et pourtant il n'apparaissait pas d'autre moyen d'expliquer le résultat de l'expérience de Michelson.
D'ailleurs, si on y réfléchit, cette contraction devient bientôt une chose moins extraordinaire, moins choquante pour le sens commun qu'il ne semblait d'abord. Si on jette très vite, contre un obstacle, un objet déformable, tel qu'un de ces petits ballons de baudruche que les enfants tiennent en laisse, on constate qu'il est légèrement déformé par l'obstacle, et précisément dans le sens de la contraction Fitzgerald-Lorentz. Le ballon cesse d'être sphérique, il s'aplatit un peu et de telle sorte que son diamètre dans la direction de l'obstacle devient plus petit. C'est à peu près, avec plus de violence, le même phénomène qui se produit lorsqu'un grain de plomb ou une balle vient s'aplatir sur un blindage. Si donc les corps solides sont déformables,—et ils le sont, puisque le froid suffit à resserrer leurs molécules,—il n'est, après tout, pas absurde, pas impossible d'imaginer qu'un violent vent d'éther les déforme.
Mais il est beaucoup moins admissible que cette déformation soit identique, soit égale, dans des conditions données, pour tous les corps quelle que soit la matière dont ils sont formés. Notre petit ballon de tout à l'heure ne serait pas du tout aplati autant, s'il était en acier au lieu d'être en baudruche.
Enfin, il y a dans cette explication quelque chose de tout à fait invraisemblable, quelque chose qui choque à la fois le bon sens et sa caricature, le sens commun. Est-il admissible que la contraction des objets, quelles que soient les circonstances des expériences (et on les a beaucoup variées), compense toujours exactement l'effet optique qu'on cherche à déceler? Est-il admissible que la nature agisse comme si elle jouait à cache-cache avec nous? Par quel mystérieux hasard se trouverait-il pour chaque phénomène une circonstance spéciale, providentiellement et exactement compensatrice?
Évidemment, il doit y avoir quelque affinité, quelque liaison d'abord inaperçue, qui lie étroitement la mystérieuse contraction matérielle de Fitzgerald et l'allongement, compensé par elle, des trajets lumineux. Nous verrons tout à l'heure comment Einstein a élucidé le mystère, démonté le mécanisme jumelé qui lie les deux phénomènes, et projeté sur tout cela un faisceau de brillante lumière. Mais n'anticipons pas....
Elle est d'ailleurs extrêmement faible, la contraction de l'appareil dans l'expérience de Michelson. Elle l'est tellement que si l'instrument avait une longueur égale au diamètre de la Terre, c'est-à-dire 12 000 kilomètres, il ne serait raccourci dans le sens de la translation terrestre que de 6 centimètres et demi! C'est dire que ce raccourcissement ne pourrait en aucun cas, étant donnée son extrême petitesse, être mesurable au laboratoire.
Il y a une autre raison à cela: même si l'appareil de Michelson était raccourci de plusieurs centimètres (c'est-à-dire même si la Terre avait une translation des milliers de fois plus rapide), cela ne pourrait être ni mesuré ni constaté. En effet, les mètres dont nous nous servirions pour faire cette mesure seraient raccourcis proportionnellement d'autant. La déformation d'un objet terrestre par la contraction de Fitzgerald-Lorentz ne peut être en aucun cas mise en évidence par un observateur d'ici-bas. Seul pourrait la constater un observateur ne participant pas à la translation de la Terre et placé par exemple sur le Soleil, ou sur une planète lente, comme Jupiter ou Saturne.
Micromégas, avant que de quitter, pour nous faire visite, sa planète d'origine, aurait donc pu, par des moyens optiques, constater que notre globe est raccourci de quelques centimètres dans la direction de son orbite, supposé que l'aimable héros voltairien fût muni d'appareils de triangulation infiniment plus précis que ceux de nos géodésiens et de nos astronomes. Arrivé sur la Terre, Micromégas, muni des mêmes appareils précis, eût été dans l'impossibilité de constater à nouveau ce raccourcissement. Il en eût éprouvé assurément une grande surprise jusqu'à ce que, rencontrant Einstein, celui-ci lui eût expliqué,—comme il fera pour nous,—et élucidé le mystère.
Mais je n'ai hélas! pas le loisir ni l'espace,—car c'est ici surtout que l'espace est relatif et sans cesse raccourci par le mouvement même de la plume,—pour décrire ce qu'aurait pu être le dialogue de Micromégas et d'Einstein. Peut-être d'ailleurs, pour rester dans la vraisemblance du pastiche, ce dialogue eût-il été fort superficiel, car—ceci dit confidentiellement,—je crois bien que Voltaire, encore qu'il en ait fort discuté, n'a jamais trop bien compris Newton, lequel était moins difficile qu'Einstein. Mme du Chatelet non plus, dont on a vanté à tort la traduction des Principes... des immortels Principes.... Cette traduction fourmille de non-sens prouvant que, si elle savait bien le latin, l'Egérie du philosophe n'entendait guère le Newton. Mais tout ceci est une autre affaire, comme dit Kipling.
Selon l'heure et la saison où l'on fait l'expérience de Michelson et les
expériences analogues, la translation de l'appareil dans l'éther est
plus ou moins rapide. Comme la compensation se produit toujours
exactement, on peut se proposer de calculer la loi exacte qui règle la
contraction en fonction des vitesses, et rend celle-là, ainsi qu'on le
constate, exactement compensatrice pour toutes celles-ci. C'est ce qu'a
fait Lorentz. Si nous désignons par V la vitesse de la lumière, par v
la vitesse du mobile dans l'éther, Lorentz a trouvé que, pour qu'il y
ait compensation dans tous les cas, il faut que la longueur du corps
mobile soit raccourcie, dans le sens de sa marche, dans la proportion de
1 à . Si à titre d'exemple nous prenons le cas de la
translation terrestre où v = 30 kilomètres, on voit que la Terre est
raccourcie suivant son orbite dans la proportion de
; la
différence entre ces deux nombres est de 1/200 000 000, et la
deux cent millionième partie du diamètre terrestre est égale à 6
centimètres et demi. C'est le nombre déjà trouvé.
Cette formule, qui donne la valeur de la contraction dans tous les cas, est élémentaire, et même pour un profane, la signification en est claire. Elle nous permet de calculer la valeur du raccourcissement pour toute grandeur de la vitesse. On en déduit facilement que si la Terre avait une translation non plus de 30 kilomètres, mais de 260 000 kilomètres par seconde, elle serait raccourcie de moitié dans le sens de son déplacement (sans avoir ses dimensions altérées dans le sens perpendiculaire). A cette vitesse, une sphère devient un ellipsoïde aplati dont le petit axe égale la moitié du grand; à cette vitesse un carré devient un rectangle dont le côté parallèle au mouvement est deux fois plus petit que l'autre.
Ces déformations doivent apparaître à un observateur immobile; mais elles sont inappréciables à un observateur participant au mouvement, pour la raison que nous avons dite: les mètres et instruments de mesure et l'œil lui-même de cet observateur sont eux-mêmes et pareillement déformés.
Mettez-vous devant une de ces glaces étrangement bombées et déformantes qu'on voit dans certaines salles de spectacle; les unes vous montreront de vous-même une image extraordinairement allongée, sans que votre corpulence ait varié; d'autres au contraire vous montreront une image où vous aurez votre hauteur habituelle, mais où votre largeur multipliée sera grotesque. Essayez pourtant, avec un mètre gradué, de mesurer dans la glace et sur ces images déformées, votre hauteur et votre largeur. Si votre taille réelle est de 1 m. 70 et votre largeur réelle de 60 centimètres, le mètre juxtaposé à votre étrange image dans la glace vous indiquera toujours que cette image a 1 m. 70 de hauteur et 60 centimètres de largeur. C'est que le mètre vu dans la glace a subi les mêmes déformations que l'image.
Cela fait que, même si le globe terrestre avait la vitesse fantastique dont nous avons parlé plus haut, les habitants de la Terre n'auraient aucun moyen de constater qu'elle et qu'eux-mêmes sont raccourcis de moitié dans le sens Est-Ouest. Un homme de 1 m. 70, couché et orienté du Nord au Sud dans un vaste lit carré, et à qui il prendrait fantaisie de se coucher ensuite en travers, orienté de l'Est à l'Ouest, n'aurait plus, à son insu, que 0 m. 85 de taille; en revanche sa corpulence aurait doublé dans le même temps, puisque tout à l'heure c'est elle qui était orientée de l'Est à l'Ouest. Mais la Terre ne se déplace que de 30 kilomètres par seconde, et sa déformation totale n'est, dans ces conditions, que de quelques centimètres.
A côté de cette vitesse de la Terre, celle de nos véhicules les plus rapides n'est que d'une faible fraction de kilomètre par seconde. Pour un avion faisant 360 kilomètres à l'heure, la vitesse n'est que de 100 mètres par seconde. La contraction Fitzgerald-Lorentz maxima de nos véhicules les plus rapides ne peut donc être que d'une fraction si infime de milliardième de millimètre qu'elle nous est complètement inappréciable. C'est pour cela, mais pour cela seulement, que la forme des objets solides qui nous sont familiers semble être invariable et constante, quelle que soit la vitesse à laquelle ils passent devant nos yeux. Il en serait tout autrement si cette vitesse était des centaines de milliers de fois plus grande.
Tout cela est bien étrange, bien étonnant, bien fantastique, bien difficile à admettre. Et pourtant cela est, si la contraction Fitzgerald-Lorentz, seule explication possible—du moins jusqu'ici—de l'expérience de Michelson, existe réellement. Mais nous avons déjà vu quelques-unes des difficultés qu'il y a à concevoir l'existence de cette contraction.
Il en est d'autres. Si tout ce que nous venons de dire est vrai, les objets immobiles dans l'éther conserveraient seuls leur figure vraie; celle-ci serait déformée dès qu'il y a déplacement dans l'éther. Parmi les objets que nous voyons sphériques dans le monde extérieur (planètes, étoiles, projectiles, gouttes d'eau, que sais-je), il y en aurait donc qui sont réellement des sphères, tandis que d'autres, parce que leur mouvement est plus rapide ou plus lent, ne seraient que des ellipsoïdes allongés ou aplatis que la vitesse a déformés? Ainsi, parmi les divers objets carrés, il y en aurait qui seraient de vrais carrés, d'autres qui, animés de vitesses différentes par rapport à l'éther, ne seraient que des rectangles réels dont la vitesse a raccourci en apparence le plus long côté? Et nous n'aurions aucun moyen de savoir jamais quels sont, parmi ces objets animés de vitesses différentes, ceux dont nous voyons la vraie forme, ceux dont la forme n'est qu'apparente, puisque nous ne pouvons, l'expérience de Michelson le prouve, déceler une vitesse par rapport à l'éther?
Non, non, et cent fois non, s'écrient les relativistes. Il y a dans tout cela trop de difficultés. Pourquoi parler sans cesse, comme fait Lorentz, de vitesses par rapport à l'éther puisque aucune expérience ne peut mettre en évidence une pareille vitesse et que l'expérience est la source unique de la vérité scientifique? Pourquoi d'autre part admettre que, parmi les objets sensibles, il en est de privilégiés qui, à l'exclusion des autres, se montrent sous leur aspect réel, sans déformation? Pourquoi admettre une chose pareille qui, en soi, répugne à l'esprit scientifique toujours ennemi des exceptions dans la nature,—il n'est de science que du général,—surtout quand ces exceptions sont indiscernables?
Les choses en étaient là,—fort avancées, au point de vue de l'expression mathématique des phénomènes, mais fort embrouillées, décevantes, contradictoires et choquantes même au point de vue physique—lorsque «enfin Malherbe vint»... je veux dire Einstein.
CHAPITRE TROISIÈME
LA SOLUTION D'EINSTEIN
Rejet provisoire de l'éther || Interprétation relativiste de l'expérience de Michelson || Nouvel aspect de la vitesse de la lumière || Explication de la contraction des corps en mouvement || Le temps et les quatre dimensions de l'espace || L'«Intervalle» einsteinien seule réalité sensible.
Première audace intelligente: Einstein, sans mettre l'éther au rang de ces fluides périmés qui, comme le phlogistique ou les esprits animaux, obstruaient les avenues de la science avant Lavoisier; sans, dis-je, dénier à l'éther toute réalité,—car enfin quelque chose sert de support aux rayons qui nous viennent du Soleil,—Einstein a remarqué d'abord que, dans tout ce qui précède, on parle sans cesse de vitesses par rapport à l'éther.
On ne peut aucunement mettre en évidence de telles vitesses, et il serait peut-être plus simple de ne plus faire intervenir dans tous les raisonnements cette chose, réelle ou non, mais inaccessible et qui, dans la montée cahotante des physiciens à travers les ornières de ces difficultés, joue seulement le rôle inefficace et gênant de la cinquième roue du carrosse électromagnétique.
Premier point donc: Einstein provisoirement commence par laisser l'éther à l'écart de ses raisonnements; il ne nie, ni n'affirme sa réalité; il l'ignore d'abord.
C'est ce que nous allons maintenant faire à son exemple. Nous ne parlerons plus, dans notre démonstration, du milieu qui propage la lumière. Nous ne considérerons celle-ci que par rapport aux êtres ou objets matériels qui l'envoient ou la reçoivent. Du coup notre marche va se trouver singulièrement allégée. Pour l'éther des physiciens, nous le reléguerons un moment au magasin des accessoires inutiles, à côté de l'éther suave, amorphe et vague... mais si précieux prosodiquement, des poètes.
Que montre en somme l'expérience de Michelson? Qu'un rayon lumineux se propage à la surface de la terre de l'Ouest à l'Est exactement avec la même vitesse que de l'Est à l'Ouest. Imaginons au milieu d'une plaine deux canons identiques tirant, au même instant, par temps calme et sans vent, à la même vitesse initiale, deux projectiles semblables, l'un vers l'Ouest, l'autre vers l'Est. Il est clair que les deux projectiles mettront le même temps pour franchir des espaces égaux, l'un vers l'Ouest, l'autre vers l'Est. Les rayons lumineux que nous pouvons produire sur la Terre se comportent à cet égard, dans leur propagation, exactement comme ces obus. Il n'y aurait donc rien d'étonnant au résultat de l'expérience de Michelson si nous ne connaissions, des rayons lumineux, que ce que nous enseigne cette expérience.
Mais poursuivons notre comparaison. Considérons l'obus tiré par un de ces canons, et supposons qu'il tombe sur un blindage, sur une cible, en un certain point du champ de tir, et qu'en parvenant à ce point la vitesse restante de l'obus soit par exemple 50 mètres par seconde. Supposons cette cible montée sur un tracteur automobile. Si celui-ci est arrêté, la vitesse de l'obus par rapport à la cible sera, nous venons de le dire, de 50 mètres par seconde au point d'impact. Mais je suppose que le tracteur et la cible qu'il porte soient lancés, par exemple, à la vitesse de 10 mètres à la seconde (cela fait du 36 kilomètres à l'heure) dans la direction du canon, de telle sorte que la cible passe à sa position précédente exactement à l'instant où l'obus lui arrive. Il est clair que la vitesse de l'obus par rapport à la cible au moment où il l'atteint, ne sera plus 50 mètres mais 50 + 10 = 60 mètres par seconde. Il est évident au contraire que cette vitesse ne serait plus, toutes choses égales d'ailleurs, que 50 − 10 = 40 mètres par seconde, si, au lieu d'être lancée vers le canon, la cible était lancée en sens inverse. Si la vitesse de la cible dans ce dernier cas était égale à celle de l'obus, il est clair que celui-ci ne la toucherait plus qu'avec une vitesse nulle.
Tout cela va de soi-même, saute aux yeux. C'est pour cela que dans les music-halls les jongleurs peuvent recevoir sur une assiette, sans les casser, des œufs crus tombant de très haut: il leur suffit de donner à l'assiette, au moment du contact, une légère vitesse descendante qui amoindrit d'autant la vitesse du choc. C'est pour cela aussi, que les boxeurs habiles savent, par un léger mouvement, fuir devant le coup de poing, ce qui diminue sa vitesse efficace, tandis qu'au contraire, s'ils vont à sa rencontre, le coup est bien plus dur.
Si les rayons lumineux se comportaient en tout,—comme ils font dans l'expérience de Michelson—de même que nos projectiles, qu'arriverait-il? Lorsqu'on va très vite à la rencontre d'un rayon lumineux, on devrait trouver que ce rayon a, par rapport à l'observateur, une vitesse accrue, et qu'il a au contraire une vitesse diminuée lorsque l'observateur fuit devant lui. S'il en était ainsi, tout serait simple; les lois de l'optique seraient les mêmes que celles de la mécanique, aucune contradiction entre elles n'aurait jeté l'émoi dans l'armée paisible des physiciens, et Einstein aurait dû employer ailleurs les ressources de son génie.
Malheureusement,—ou peut-être heureusement, car, après tout, l'imprévu et le mystère seuls donnent du charme à la marche de ce monde,—il n'en est rien.
Les observations physiques, comme les astronomiques, montrent qu'en toutes circonstances, qu'on coure très vite au-devant de la lumière ou qu'on fuie devant elle, toujours elle a, par rapport à l'observateur, exactement la même vitesse. Il y a, en particulier, dans le ciel des étoiles qui s'éloignent ou se rapprochent de nous, c'est-à-dire dont nous nous éloignons ou nous rapprochons avec des vitesses de plusieurs dizaines et même de centaines de kilomètres par seconde. Eh bien! l'astronome de Sitter a montré que la vitesse de la lumière qui nous en arrive est pour nous, et toujours, exactement la même.
Ainsi, on n'a jamais pu jusqu'ici, par aucun artifice, par aucun mouvement, ajouter ou retrancher quelque chose à la vitesse avec laquelle nous parvient un rayon lumineux. L'observateur constate que la propagation de la lumière est, par rapport à lui, toujours identique, que cette lumière provienne d'une source qui s'éloigne ou qui se rapproche très vite, qu'il se précipite à sa rencontre ou en sens contraire. L'observateur peut toujours augmenter ou diminuer la vitesse par rapport à lui d'un obus, d'une onde sonore, d'un mobile quelconque, en s'élançant vers ce mobile ou en fuyant devant lui. Quand le mobile est un rayon lumineux, on ne peut rien faire de pareil.
Ainsi, la vitesse d'un véhicule ne peut en aucun cas s'ajouter à celle de la lumière qu'il reçoit ou qu'il émet, ni s'en retrancher.
Cette vitesse-limite de près de 300 000 kilomètres par seconde, qu'on observe toujours pour la lumière, est, à divers égards, analogue à la température de 273° au-dessous de zéro qu'on appelle le «zéro absolu» et qui est elle aussi, dans la nature, une limite infranchissable.
Tout cela prouve que les lois qui règlent les phénomènes optiques ne sont pas les mêmes que les lois classiques des phénomènes mécaniques. C'est à concilier, à réconcilier ces lois apparemment contradictoires que s'est attaché Lorentz, après Fitzgerald, par l'hypothèse étrange de la contraction.
Mais voici que, lumineusement, Einstein va nous montrer que cette contraction est une chose parfaitement naturelle lorsqu'on abandonne certaines conceptions peut-être erronées... encore que classiques, qui présidaient à notre manière habituelle, ancestrale, d'apprécier les longueurs et les temps.
Considérons un objet quelconque, une règle par exemple. Qu'est-ce qui définit pour nous la longueur apparente de cette règle? C'est l'image délimitée sur notre rétine par les deux rayons provenant des deux extrémités de la règle, et qui parviennent à notre pupille simultanément.
Je souligne à dessein ce mot, car il est ici la clef de tout. Si notre règle est immobile devant nous, cela est tout simple. Mais si on la déplace pendant que nous la regardons, ce l'est moins. Ce l'est même si peu, qu'avant Einstein la plupart des plus grands savants et toute la science classique ont pensé que l'image instantanée d'un objet indéformable était nécessairement et toujours identique et indépendante des vitesses de l'objet et de l'observateur. C'est que toute la science classique raisonnait comme si la propagation de la lumière avait été elle-même instantanée, avait eu une vitesse infinie, ce qui n'est pas.
Je suis sur le talus, au bord d'une ligne de chemin de fer; sur la voie il y a un de ces beaux wagons allongés de la Compagnie des wagons-lits, où il est si agréable de penser que l'espace est relatif, au sens galiléen du mot. Je fais planter tout au bord de la voie deux piquets l'un bleu, l'autre rouge, qui marquent exactement les extrémités de ce wagon et qui encadrent tout juste sa longueur. Puis, sans quitter mon poste d'observation qui est sur le talus, face au milieu du wagon, j'ordonne que celui-ci soit ramené en arrière et attelé à une locomotive d'une puissance inouïe qui va le faire passer devant moi à une vitesse fantastique, dépassant des millions de fois toutes celles qu'ont pu réaliser les ingénieurs... tant est grande la supériorité potentielle de l'imagination sur la médiocre réalité. Je suppose aussi que ma rétine est parfaite et constituée de telle sorte que les impressions visuelles n'y durent qu'autant que la lumière qui les provoque.
Ces hypothèses un peu arbitraires n'entrent pour rien dans le fond de la démonstration; elles la rendent seulement plus commode.
Et maintenant voici la question. Quand le wagon-lit, que je suppose fait, d'ailleurs, d'un métal indéformable, passera à toute vitesse devant moi, aura-t-il pour moi exactement la même longueur apparente que lorsqu'il était au repos? Autrement dit, à l'instant où je verrai son extrémité avant coïncider en passant avec le piquet bleu que j'ai fait planter, verrai-je son extrémité arrière coïncider en même temps avec le piquet rouge? A cette question, Galilée, Newton et tous les tenants de la science classique auraient répondu oui. Et pourtant la réponse est non selon Einstein.
En voici la démonstration très simple et telle qu'elle dérive de la conception einsteinienne.
Je suis, rappelons-le, placé au bord de la voie, à égale distance des deux piquets. Lorsque l'extrémité antérieure du wagon coïncide avec le piquet bleu, elle envoie vers mon œil un certain rayon lumineux (que j'appelle pour simplifier rayon-avant) qui coïncide avec le rayon que m'envoie le piquet bleu. Ce rayon-avant atteint mon œil en même temps qu'un certain rayon venu de l'extrémité arrière du wagon (et que j'appelle pour simplifier rayon-arrière). Le rayon-arrière coïncide-t-il avec le rayon que m'envoie le piquet rouge? Évidemment non: en effet le rayon-avant s'éloigne de l'extrémité avant du wagon avec la même vitesse que le rayon-arrière de l'extrémité arrière (comme le constaterait un voyageur qui, dans le wagon, ferait sur ces rayons l'expérience de Michelson). Mais l'extrémité avant du wagon s'éloigne de mon œil tandis que l'extrémité arrière s'en approche. Par conséquent le rayon-avant se propage vers mon œil plus lentement que le rayon-arrière, sans que je puisse d'ailleurs m'en apercevoir, puisque à leur arrivée je trouve la même vitesse aux deux rayons. Par conséquent le rayon-arrière qui arrive à mon œil en même temps que ledit rayon-avant, a dû quitter l'extrémité arrière du wagon plus tard que le rayon-avant n'a quitté son extrémité avant. Donc lorsque je vois le bord antérieur du wagon coïncider avec le piquet bleu, je vois simultanément le bord arrière du wagon qui a déjà dépassé depuis un certain temps le piquet rouge.
Donc la longueur du wagon lancé à toute vitesse, et telle qu'elle m'apparaît, est plus petite que la distance des deux piquets, laquelle marquait la longueur du wagon au repos. (C. Q. F. D.).
Avec un peu d'attention, tout le monde comprendra cette démonstration dont la simplicité élémentaire n'a point été obtenue sans peine, mais qui se ramène en fait à la démonstration mathématique d'Einstein et à sa conception de la simultanéité.
Il en résulte que le wagon ou, d'une manière générale, un objet quelconque semble raccourci par sa vitesse et dans le sens de celle-ci par rapport à l'observateur. La même chose a lieu évidemment si c'est l'observateur qui se déplace devant l'objet, puisqu'on ne peut connaître que des vitesses relatives, en vertu du principe de relativité classique de Newton et de Galilée.
Sous cet aspect nouveau, la contraction de Lorentz-Fitzgerald devient intelligible ou du moins admissible. Cette contraction n'est plus, de la sorte, la cause du résultat négatif de l'expérience de Michelson; elle en est la conséquence. Tout s'en trouve clarifié, et on comprend maintenant qu'il y avait, dans la façon classique d'évaluer la dimension instantanée des objets, quelque chose d'incorrect.
Certes, le fait que des rayons lumineux, animés de vitesses différentes au départ de leurs sources, aient toujours en arrivant à notre œil des vitesses identiques et indiscernables, est étrange et heurte quelque peu nos vieilles habitudes d'esprit. Si j'ose employer une comparaison qui est seulement destinée à faire penser, mais nullement à expliquer, il y a là peut-être quelque chose d'analogue à ce qui se passe avec les bombes d'avions. Des bombes d'un modèle donné, qu'elles soient lâchées par l'avion d'une hauteur de 5 000 mètres ou d'une hauteur de 10 000, et qui, par conséquent, ont à 5 000 mètres du sol des vitesses de chute fort dissemblables, ont toujours en arrivant au sol la même vitesse restante. C'est l'effet modérateur, égalisateur, de la résistance de l'air, qui empêche la vitesse de s'accroître indéfiniment et la rend constante lorsqu'elle atteint une certaine valeur.
Faut-il admettre qu'autour de notre œil, autour des objets, il y a une sorte de champ de résistance qui impose à la lumière survenante une limite semblable? Qui le sait? D'ailleurs ces questions n'ont peut-être pas de sens pour un physicien. Celui-ci ne peut connaître et ne connaîtra le comportement de la lumière qu'à son départ de la source matérielle et à son arrivée à l'œil armé ou non d'instruments. Il ne peut savoir comment se comporte sa propagation dans l'espace intermédiaire dénué de matière.
Plus d'ailleurs nous approfondirons la nouvelle physique, plus nous constaterons qu'elle puise presque toute sa force dans son dédain systématique de ce qui n'est pas phénoménal, de ce qui n'est pas expérimentalement observable. C'est parce qu'elle est basée uniquement sur les faits (si contradictoires soient-ils) que notre démonstration du raccourcissement nécessaire des objets par leur vitesse relative à l'observateur, est forte.
Nous comprenons maintenant le sens profond de la contraction de Fitzgerald-Lorentz. Cette contraction apparente n'est nullement due au mouvement des objets par rapport à l'éther; elle est essentiellement l'effet des mouvements des objets et des observateurs les uns par rapport aux autres, des mouvements relatifs, au sens de la vieille mécanique.
Les plus grandes vitesses relatives auxquelles nous soyons habitués, dans la pratique de l'existence, sont inférieures à quelques kilomètres par seconde. La vitesse initiale de l'obus de la Bertha n'était que d'environ 1 300 mètres par seconde. Pour des mouvements aussi lents, la contraction relativiste est complètement négligeable. C'est pourquoi, ne l'ayant jamais constatée, la mécanique classique a considéré la forme et la dimension des objets rigides comme indépendantes des systèmes de référence.
C'était à peu près vrai. C'est là toute la différence qu'il y a entre le vrai et le faux. Dire que 999 990 + 9 = 1 million, c'est dire quelque chose d'à peu près vrai, donc de faux. Quand la rotondité de la Terre fut démontrée, elle ne changea assurément rien aux procédés des architectes, qui construisent encore leurs bâtisses comme si la direction marquée par le fil à plomb était toujours parallèle à elle-même. Pareillement, nos fabricants de locomotives et d'avions n'auront pas de longtemps à considérer les formes de leurs machines comme dépendant de leurs vitesses. Qu'importe! Le point de vue de la pratique n'est et ne doit être celui de la science que par ricochet. Tant pis s'il n'y a pas de ricochet, ou s'il est tardif.
D'ailleurs, on a découvert depuis quelques années, ici-bas, des mobiles dont les vitesses, relatives à nous, atteignent des dizaines, des centaines de milliers de kilomètres: ce sont les projectiles des rayons cathodiques et des rayons du radium. A ces allures, la contraction relativiste est très notable. Nous verrons comment, effectivement, elle a été notée.
Récapitulons ce qui est maintenant acquis:
Les objets apparaissent déformés dans le sens de leur mouvement et non dans le sens perpendiculaire. Donc leur forme, fussent-ils d'une matière idéale et parfaitement indéformable, dépend de leur vitesse rapportée à l'observateur. Ceci est le point de vue essentiellement neuf que la «relativité spéciale» d'Einstein surajoute à la relativité des mécaniciens classiques, et à la relativité des philosophes. Pour eux, les dimensions absolues d'un objet rigide ou d'une figure géométrique n'avaient rien d'absolu, et seuls les rapports de ces dimensions avaient une réalité.
Le point de vue nouveau est que ces rapports eux-mêmes sont relatifs, puisqu'ils sont fonction de la vitesse de l'observateur. C'est une sorte de relativité au second degré, à laquelle les philosophes, ni les physiciens classiques n'avaient songé.
Les relations spatiales elles-mêmes sont relatives, dans un espace déjà relatif.
Dans le cas de notre wagon de tout à l'heure et des deux piquets qui définissent sa longueur au repos, un observateur placé dans le wagon trouverait que la distance des deux piquets s'est raccourcie lorsqu'il les croise. Son wagon lui semble plus long que l'intervalle des piquets. Moi qui demeure entre ceux-ci, je constate le contraire. Et pourtant je n'ai aucun moyen de démontrer au voyageur qu'il s'est trompé. Je vois très bien que le rayon lumineux venu du piquet arrière court derrière le wagon et par conséquent a, par rapport à lui, une vitesse inférieure à 300 000 kilomètres par seconde; je sais que de là provient l'erreur du voyageur, mais je n'ai aucun moyen de le convaincre de cette erreur, car il me répondra toujours et avec raison: «J'ai mesuré la vitesse avec laquelle ce rayon m'arrive et je l'ai trouvée égale à 300 000 kilomètres.» Chacun de nous en réalité a raison.
En mouvement très rapide, un carré paraîtrait un rectangle à l'observateur; un cercle paraîtrait elliptique. Si la Terre tournait quelques milliers de fois plus vite autour du Soleil, nous le verrions allongé et pareil à un gigantesque citron suspendu dans le ciel. Si un aviateur pouvait survoler à une vitesse fantastique la place Vendôme, suivant la direction de la rue de la Paix,—et si ses impressions rétiniennes étaient instantanées,—la place aurait pour lui la forme d'un rectangle très aplati; s'il la survolait suivant une diagonale, il la verrait, de carrée qu'elle était, devenir un losange. Si le même aviateur survolait, en la coupant, une route où chemine du bétail bien engraissé conduit vers l'abattoir, il s'étonnerait, car les animaux lui sembleraient étonnamment minces et maigres sans que leur longueur ait varié.
Le fait que les déformations dues à la vitesse sont réciproques est une des conséquences les plus curieuses de tout cela. Un homme qui serait capable de circuler en tous sens parmi les autres hommes avec la vitesse fantastique des follets shakespeariens (mettons à environ 260 000 kilomètres à la seconde... mais que ne peut un follet shakespearien!) trouverait que ses semblables sont devenus des nains deux fois plus petits que lui. C'est donc que lui-même serait devenu un géant, une sorte de Gulliver parmi ces Lilliputiens? Eh bien! pas du tout. Par un juste retour des choses d'ici-bas, il apparaîtrait lui aussi comme un nain à ceux qu'il croit plus petits que lui, et qui sont sûrs du contraire.
Qui a raison, qui a tort? Les uns et les autres. Tous les points de vue sont exacts, mais il n'y a que des points de vue personnels.
Autre chose encore: un observateur, quel qu'il soit, ne peut voir les êtres et les objets non liés à lui que plus petits,—jamais plus grands!—que ceux liés à son mouvement. Si j'osais alléger ce grave exposé par quelque réflexion moins austère qu'il n'est d'usage parmi les physiciens, je remarquerais que le système nouveau nous apporte ainsi une justification suprême de l'égoïsme ou plutôt de l'égocentrisme.
Après l'espace, le temps. Par un raisonnement analogue à celui qui nous a montré la distance des choses dans l'espace liée à leur vitesse relative à l'observateur, on peut établir que leur distance dans le temps en dépend également.
Je ne juge pas utile de refaire ici, par le menu, le raisonnement einsteinien pour les durées; il serait analogue à celui qui nous a servi pour les longueurs, et encore plus simple. Le résultat est le suivant: le temps exprimé en secondes que met un train à passer d'une station à une autre est plus court pour les voyageurs du train que pour nous qui les regardons passer, et qui sommes munis d'ailleurs de chronomètres identiques aux leurs[4]. Pareillement tous les gestes faits par des hommes, sur un véhicule en mouvement, apparaîtront ralentis et par conséquent prolongés à un observateur immobile, et réciproquement. Pour que ces variations des durées fussent sensibles, il faudrait, comme pour les variations concomitantes des longueurs, que les vitesses fussent fantastiques.
[4] La meilleure définition qu'on puisse donner de la seconde est la suivante: c'est le temps qu'il faut à la lumière pour parcourir 300 000 kilomètres dans le vide et loin de tout champ intense de gravitation. Cette définition, la seule rigoureuse, est d'ailleurs justifiée par le fait qu'on n'a pas de meilleur moyen que les signaux lumineux ou hertziens (qui ont même vitesse) pour régler les horloges.
Il n'en est pas moins vrai que la durée qui sépare la naissance et la mort d'une créature quelconque, c'est-à-dire sa vie, paraîtra prolongée si cette créature se déplace très vite et frénétiquement par rapport au regardant. Dans ce monde où paraître est presque tout, cela a bien son importance, et il reste de tout cela que, philosophiquement parlant, se mouvoir c'est durer davantage... pour les autres, non pour soi; c'est aussi voir durer davantage les autres.
Admirable justification, et combien profonde et imprévue, de ce que le sage avait entrevu: l'immobilité, c'est la mort.
Naguère, avant l'hégire einsteinienne, avant le début de l'ère relativiste, chacun était persuadé que la portion de l'espace occupée par un objet était suffisamment et explicitement définie par ses dimensions dans le sens de la longueur, de la largeur, de la hauteur. Ces données sont ce qu'on appelle les trois dimensions d'un objet; comme encore, si on préfère employer d'autres points de repères, la longitude, la latitude et l'altitude de chacun de ses points; ou bien, en astronomie, l'ascension droite, la déclinaison et la distance.
Il était bien entendu et bien connu qu'en outre il fallait préciser l'époque, l'instant auquel correspondaient ces données. Si je définis la position d'un aéronef par sa longitude, sa latitude et son altitude, ces indications ne sont exactes que pour l'instant considéré, puisque l'aéronef se déplace par rapport au repère,—et cet instant doit être donné lui aussi. En ce sens, on sentait depuis longtemps que l'espace dépend du temps.
Mais la théorie relativiste montre qu'il en dépend d'une manière bien plus intime encore et bien plus profonde, et que le temps et l'espace sont aussi liés et solidaires que ces monstres xiphopages que les chirurgiens ne peuvent séparer sans tuer l'un et l'autre.
Les dimensions d'un objet, sa forme, l'espace apparent occupé par lui dépendent de sa vitesse, c'est-à-dire du temps que met l'observateur à parcourir une certaine distance par rapport à cet objet. A cet égard déjà, l'espace dépend du temps; en outre, l'observateur mesure ce temps avec un chronomètre dont les secondes sont plus ou moins précipitées selon cette vitesse.
Donc définir l'espace sans le temps est impossible. C'est pourquoi on dit maintenant que le temps est la quatrième dimension de l'espace, et que l'espace où nous vivons a quatre dimensions.
Il est curieux que certains bons esprits, dans le passé, en avaient eu l'intuition plus ou moins obscure. C'est ainsi qu'en 1777 Diderot écrivait dans l'Encyclopédie à l'article «Dimension»:
«... J'ai dit plus haut qu'il était impossible de concevoir plus de trois dimensions. Un homme d'esprit de ma connaissance croit qu'on pourrait cependant regarder la durée comme une quatrième dimension et que le produit du temps par la solidité serait, en quelque manière, un produit de quatre dimensions. Cette idée peut être contestée, mais elle a, il me semble, quelque mérite, quand ce ne serait que celui de la nouveauté.»
C'est à coup sûr de l'algèbre qu'est née la première idée d'un espace à plus de trois dimensions. Puisqu'en effet les lignes ou espaces à une dimension sont représentés par des expressions algébriques du premier degré, les surfaces ou espaces à deux dimensions par des formules du second degré, les volumes ou espaces à trois dimensions par des expressions du troisième degré, il était naturel de se demander si les formules du quatrième degré et au delà ne sont pas, elles aussi, la représentation algébrique de quelque forme d'espace à quatre dimensions et davantage.
L'espace à quatre dimensions des relativistes n'est, au surplus, pas tout à fait ce qu'imaginait Diderot. Il n'est pas le produit du temps par l'étendue, car une diminution du temps n'y est pas compensée par un accroissement de l'espace, bien au contraire.
Considérons deux événements, par exemple les passages successifs, de notre rapide wagon-lit à deux stations. Pour un voyageur du wagon la distance des deux stations, mesurée par la longueur du chemin parcouru, est, comme nous l'avons montré, plus courte que pour un observateur immobile au bord de la voie. Le temps qui sépare les deux passages est également moindre pour le premier observateur. En effet le nombre des secondes et fractions de secondes écoulées au chronomètre dont il est muni, est plus petit pour lui, nous l'avons vu.
En un mot, la distance dans le temps et la distance dans l'espace diminuent toutes deux en même temps lorsque la vitesse de l'observateur augmente et augmentent toutes deux quand la vitesse de l'observateur diminue.
Ainsi la vitesse (et il ne s'agit jamais, rappelons-le, que de la vitesse relativement aux choses observées), opère en quelque sorte comme un double frein qui ralentit les durées et raccourcit les longueurs. Si l'on préfère une autre image, la vitesse nous fait voir à la fois les espaces et les temps plus obliquement, sous un angle de plus en plus aigu. L'espace et le temps ne sont donc que des effets changeants de perspective.
Pouvons-nous concevoir l'espace à quatre dimensions, c'est-à-dire pouvons-nous en imaginer une représentation sensible? Si non, cela ne prouvera rien contre la réalité de cet espace. Pendant des siècles on n'a pas conçu les ondes hertziennes et aujourd'hui encore elles ne nous sont pas directement sensibles. En existent-elles moins? En vérité, nous ne concevons déjà que difficilement l'espace à trois dimensions. Sans nos déplacements musculaires nous l'ignorerions. Un homme paralysé et borgne, c'est-à-dire n'ayant pas la sensation du relief que donne la vision binoculaire,—qui est, elle aussi, avant tout, un tâtonnement musculaire,—verrait de son œil unique et immobile tous les objets projetés dans un même plan, comme sur une toile de fond au théâtre. L'espace à trois dimensions lui serait inaccessible.
Je crois que certaines personnes peuvent se représenter l'espace à quatre dimensions. Les aspects successifs d'une fleur aux différents âges de sa croissance, du jour où elle n'est qu'un fragile bourgeon vert jusqu'à celui où ses pétales épuisés tombent dolents, et les divers déplacements successifs de sa corolle sous l'influence du vent constituent une image globale de la fleur dans l'espace à quatre dimensions.
Est-il des hommes pouvant d'un seul coup voir tout cet ensemble? Oui, et notamment, je crois, les bons joueurs d'échecs. Si un grand joueur d'échec joue bien, c'est parce que, d'un seul regard de son œil mental, il embrasse l'ensemble chronologique et spatial des coups possibles dérivés d'un seul coup initial, avec toutes leurs répercussions sur l'échiquier. Il en voit simultanément toute la succession.
Ces mots soulignés jurent un peu d'être accouplés. C'est que nous sommes dans un domaine où prétendre exprimer vocabulairement les nuances des choses est une gageure. Autant vaudrait, après tout, tenter de définir avec des mots tout ce qu'il y a dans une symphonie de Beethoven. «Traduttore traditore»: si cet adage est vrai, c'est surtout parce que le mot est l'organe de la traduction.
Arrivés à ce point, dans notre lente ascension de la physique relativiste, nous n'avons plus devant les yeux qu'un champ de bataille où gisent des cadavres et des débris.
Le temps et l'espace, nous croyions ces crochets solidement rivés au mur derrière lequel se cache la réalité, et nous y attachions nos flottantes notions du monde extérieur, ainsi que des vêtements à des portemanteaux. Ils gisent maintenant arrachés et tordus dans le plâtras des anciennes théories, sous les coups de marteau de la physique nouvelle.
Nous savions bien, certes, que l'âme des êtres nous était cachée, mais nous pensions du moins voir leur visage. Voilà qu'en nous approchant, celui-ci n'est plus qu'un masque. Le monde extérieur, que nous montre Einstein, n'est rien qu'un bal travesti, et par une ironie décevante, c'est nous-mêmes qui avons fabriqué les loups de velours aux reflets changeants, les costumes papillotants.
Loin de nous révéler la réalité, l'espace et le temps ne sont, selon Einstein, que des voiles mouvants, tissés par nous-mêmes, et qui la cachent à nos yeux. Et pourtant, chose étrange et mélancolique, nous ne pouvons pas plus concevoir le monde sans le temps et l'espace que nous ne pouvons observer certains microbes au microscope sans les injecter de matières colorantes.
Le temps et l'espace ne sont-ils donc que des hallucinations? Et alors, que reste-t-il?
Eh bien! non. Car voici qu'après avoir détruit les ruines branlantes, la doctrine relativiste va soudain reconstruire. Voici que, derrière les voiles déchirés et foulés aux pieds, va surgir une réalité plus neuve, plus subtile.
Si nous décrivons l'univers à la manière habituelle, séparément dans les catégories du temps et de l'espace, nous voyons que son aspect dépend de l'observateur. Il n'en est heureusement pas de même lorsqu'on le décrit dans la catégorie unique de ce continuum à quatre dimensions où Einstein situe les phénomènes et où le temps et l'espace unis sont étroitement solidaires.
Si j'ose employer cette image, le temps et l'espace sont comme deux miroirs, l'un convexe, l'autre concave,—dont les courbures sont d'autant plus accusées que la vitesse de l'observateur est plus grande. Chacun de ces deux miroirs donne séparément une image déformée de la succession des choses. Mais, par une heureuse compensation, il se trouve qu'en combinant les deux miroirs de telle sorte que l'un réfléchisse les rayons reçus par l'autre, l'image de cette succession est rétablie dans sa réalité non déformée.
La distance dans le temps et la distance dans l'espace de deux événements donnés très voisins augmentent toutes deux ou diminuent toutes deux quand la vitesse de l'observateur diminue ou augmente. Nous l'avons établi. Mais le calcul qui est facile, grâce à la formule donnée ci-dessus pour exprimer la contraction de Lorentz-Fitzgerald, montre qu'il existe une relation constante entre ces variations concomitantes du temps et de l'espace. Pour préciser, la distance dans le temps et la distance dans l'espace de deux événements voisins sont numériquement entre elles comme l'hypoténuse et un autre côté d'un triangle rectangle sont au troisième côté lequel resterait invariable[5].
[5] Dans le calcul ou la représentation géométrique qu'on peut lui substituer, l'hypoténuse du triangle est la distance dans le temps, chaque seconde étant figurée par 300 000 kilomètres.
Ce troisième côté étant pris pour base, les deux autres dessineront, au-dessus de lui, un triangle plus ou moins haut, selon que la vitesse de l'observateur sera plus ou moins réduite. Cette base fixe du triangle dont les deux autres côtés,—la distance spatiale et la distance chronologique,—varient simultanément avec la vitesse de l'observateur, est donc une quantité indépendante de cette vitesse.
C'est cette quantité, qu'Einstein a appelée l'intervalle des événements. Cet «intervalle» des choses dans l'espace-temps à quatre dimensions est une sorte de conglomérat de l'espace et du temps, un amalgame de l'un et de l'autre dont les composants peuvent varier, mais qui, lui, reste invariable. Il est la résultante constante de deux vecteurs changeants. L'«intervalle» des événements, ainsi défini, nous fournit pour la première fois, selon la physique relativiste, une représentation impersonnelle de l'Univers.
Suivant la saisissante image de Minkowski, «l'espace et le temps ne sont que des fantômes. Seul existe dans la réalité une sorte d'union intime de ces deux entités.»
L'unique réalité saisissable à l'homme dans le monde extérieur, la seule donnée vraiment objective et impersonnelle qui nous soit accessible, c'est donc l'Intervalle einsteinien, tel qu'il vient d'être défini. L'Intervalle des événements est pour les relativistes la seule part sensible du réel. Hors de là, il y a peut-être quelque chose, mais rien que nous puissions connaître.
Étrange destinée de la pensée humaine! Le principe de relativité, par les découvertes de la physique moderne, a étendu son aile vaporeuse bien plus loin qu'autrefois et jusqu'à des sommets qu'on croyait inaccessibles à son vol aquilin. Et c'est à lui pourtant que nous devons peut-être la première emprise véritable de notre faiblesse sur le monde sensible, sur la réalité.
Le système d'Einstein, dont il nous reste à voir maintenant la partie constructive, disparaîtra un jour comme les autres. Il n'existe dans la science que des théories «à titre temporaire», jamais de théories «à titre définitif»... et c'est peut-être ce qui a multiplié ses victoires. La notion de l'Intervalle des choses survivra sans doute à tous les écroulements. Sur elle devra être bâtie la science de l'avenir; sur elle s'élève chaque jour l'édifice hardi de la science d'aujourd'hui.
Encore ceci doit-il être formellement entendu: l'Intervalle einsteinien ne nous apprend rien sur l'absolu, sur les choses en soi. Il ne nous indique, lui aussi, que des rapports entre ces choses. Mais les relations qu'il manifeste semblent être véritables et invariantes.
Elles participent de ce degré de vérité objective que la science classique attribuait, avec une assurance peut-être fallacieuse, aux relations chronologiques et aux relations spatiales des phénomènes. Aux yeux de la physique nouvelle celles-ci n'étaient que des balances fausses, et seul l'Intervalle einsteinien nous livre ce qui peut être connu du Réel.
Ainsi la doctrine d'Einstein s'enorgueillit d'avoir levé à jamais un coin du voile décevant qui nous dérobe la nudité sacrée de la Nature.
CHAPITRE QUATRIÈME
LA MÉCANIQUE EINSTEINIENNE
La mécanique fondement de toutes les sciences || Pour remonter le cours du temps || La vitesse de la lumière est une limite infranchissable || L'addition des vitesses et l'expérience de Fizeau || Variabilité de la masse || La Balistique des électrons || Gravitation et lumière des microcosmes atomiques || Matière et énergie || La mort du Soleil.
Lorsque Baudelaire écrivait:
il ne pensait, comme les physiciens de son époque, qu'à ces déformations statiques connues depuis qu'il y a des hommes et qui regardent. Ce que nous avons vu de l'espace et du temps einsteiniens nous montre qu'il doit exister, en outre, des déformations cinématiques à l'abri desquelles ne se trouve aucun objet sensible, si rigide et indéformable qu'il paraisse.
Le mouvement déforme donc les lignes bien plus que ne pensait Baudelaire, et même celles des plus marmoréennes statues. Cette déformation-là, qu'il faut aimer et non haïr, parce qu'elle nous rapproche du cœur même des choses, a bouleversé d'abord la mécanique entière.
La mécanique est à la base de toutes les sciences expérimentales parce qu'elle est la plus simple et parce que les phénomènes qu'elle étudie sont toujours présents,—sinon exclusivement présents,—parmi les phénomènes objets des autres sciences plus complexes, physique, chimie, biologie. La réciproque n'est pas vraie.
Par exemple, il n'y a pas un seul phénomène chimique ou biologique où l'on ne doive considérer des corps qui sont en mouvement, qui ont une masse, qui dégagent ou absorbent de l'énergie.
Au contraire, les particularités d'un phénomène biologique, chimique, ou physique, par exemple l'existence d'une différence de potentiel, ou d'une oxydation, ou d'une pression osmotique ne se retrouvent pas toujours dans l'étude des mouvements d'une masse pesante et des forces agissant sur elle et par elle.
Par rapport à la mécanique, la physique, la chimie, la biologie ont, rangés dans cet ordre, des objets de complexité croissante et de généralité, ou, pour mieux dire, d'universalité décroissante. Ces sciences ont une dépendance réciproque qui est celle du tronc d'un arbre avec ses branches, ses rameaux et ses fleurs. Elles sont aussi entre elles un peu comme les pièces emboîtées des mâts où les télégraphistes militaires fixent leurs antennes. La pièce inférieure du mât, plus large, soutient le tout, mais ce sont les pièces supérieures qui portent les organes délicats et compliqués.
L'objet des grands synthétistes de la science a toujours été et est encore de ramener, comme l'avait tenté Descartes, tous les phénomènes aux phénomènes mécaniques. Que ces tentatives soient ou non fondées, qu'elles puissent un jour aboutir ou qu'elles soient, au contraire, a priori vouées à l'échec parce que les phénomènes physico-biologiques contiennent peut-être des éléments essentiellement irréductibles aux éléments mécaniques, c'est une question qui a été et qui sera encore très disputée. Mais quelles que soient à cet égard les attitudes variées des penseurs, ils sont d'accord sur ceci: dans tous les phénomènes naturels, dans tous les phénomènes objets de science, il y a l'élément mécanique,—pour les uns élément exclusif, pour les autres élément principal, mais seulement partiel, des réalités objectives.
Si je rappelle ici tout cela, c'est pour en arriver à cette conclusion: tout ce qui modifie la mécanique, modifie du même coup l'édifice des notions fondées sur elle, c'est-à-dire les autres sciences, toute la science, et notre conception de l'Univers.
Or nous allons voir que la théorie d'Einstein, par une conséquence immédiate de ce qu'elle nous a enseigné déjà du temps et de l'espace, bouleverse de fond en comble la mécanique classique. C'est pour cela, et par cela surtout, qu'elle a porté dans l'édifice un peu somnolent de la science traditionnelle un ébranlement dont les vibrations ne sont pas près de cesser.
En abordant la mécanique einsteinienne, nous aurons la joie de passer des conceptions un peu trop exclusivement géométriques et psychologiques de temps et d'espace, à l'étude directe des réalités sensibles, des corps. Ici nous pourrons confronter la théorie et la réalité, les prémisses mathématiques et les vérifications substantielles, et nous aurons le plaisir de voir par les faits, par l'expérience, ce qu'il faut penser de tout cela. Entre les anciennes manières de concevoir et la nouvelle, nous pourrons choisir en connaissance de cause, d'après des critères visibles.
En un mot, et si j'ose employer cette image, tant qu'il s'agissait des notions d'espace et de temps, cadres assez vides par eux-mêmes, vases intéressants surtout par les liquides qu'ils contiennent, nous étions un peu comme ces jeunes gens qui doivent choisir une fiancée d'après les seules descriptions qu'on leur a faites. Nous allons voir maintenant de nos propres yeux, et à l'œuvre, les deux prétendantes à notre dilection: la science classique et la théorie d'Einstein. Nous les verrons toutes deux mettre la main à la pâte des faits, et nous pourrons comparer les mets délectables qu'elles en auront respectivement tirés pour la nourriture de notre esprit.
Les théories ne valent qu'en fonction des faits, et celles qui, comme tant de métaphysiques, ne trouvent point de critère réel pour les départager, valent toutes également. L'expérience, source unique du savoir et dont Lucrèce disait déjà
les faits sensibles, voilà ce qui va juger le système einsteinien.
Le résultat de l'expérience de Michelson, l'impossibilité de mettre en évidence aucune vitesse de la Terre par rapport au milieu dans lequel se propage la lumière, ce fait, avons-nous dit déjà, revient à ceci: on ne peut par aucun moyen constater, réaliser une vitesse supérieure à celle de la lumière. Cette conséquence de l'expérience de Michelson gagnera peut-être à être déduite sous une forme tangible. Voici une image qui y pourvoit.
Dans je ne sais plus quel roman astronomique, un observateur imaginaire est supposé s'éloigner de la Terre avec une vitesse supérieure à celle de la lumière, 500 000 kilomètres à la seconde, par exemple, tout en maintenant ses yeux (munis au besoin de puissantes besicles) constamment dirigés vers ce petit globe fébrile.
Que va-t-il arriver? Notre observateur verra évidemment les phénomènes terrestres à l'envers, puisque, dans son voyage, il rattrapera successivement des ondes lumineuses qui ont quitté la terre avant lui, et depuis d'autant plus longtemps qu'elles en sont plus éloignées. Notre homme, ou plutôt notre surhomme, assistera donc au bout d'un certain temps à la bataille de la Marne. Il verra d'abord le champ de bataille couvert de morts. Petit à petit ces morts se relèveront pour rejoindre leur poste de combat et finalement ils se rangeront par escouades dans les taxis de Gallieni, lesquels regagneront Paris à toute vitesse et en marche-arrière, arrivant au milieu de la population inquiète de l'issue du combat dont nos soldats ne pourront, et pour cause, apporter nulle nouvelle. En un mot, notre observateur, s'il s'éloigne de la Terre avec une vitesse supérieure à celle de la lumière, verra les événements terrestres se dérouler en remontant le cours du temps.
Mais les choses se passeront très différemment si, au contraire, notre observateur restant immobile, c'est la Terre qui s'éloigne de lui avec une vitesse de 500 000 kilomètres à la seconde. Qu'arrivera-t-il alors? Il est clair qu'en ce cas notre observateur verra les événements terrestres non plus à l'envers mais à l'endroit. Il y a cette différence toutefois, qu'ils lui paraîtront se dérouler avec une majestueuse lenteur, puisque les rayons lumineux ayant quitté la Terre à la fin d'un événement quelconque, mettront beaucoup plus de temps à lui parvenir que les rayons qui ont quitté la Terre au commencement.
En résumé, les phénomènes observés par lui étant essentiellement différents dans les deux cas, notre observateur supposé aurait un moyen de savoir si c'est lui qui s'éloigne de la Terre ou si c'est la Terre qui s'éloigne de lui, de déceler la translation vraie de la Terre dans l'espace. Translation par rapport au milieu qui propage la lumière... ce qui ne veut pas nécessairement dire,—nous l'avons montré,—translation par rapport à l'espace absolu.
L'expérience telle que nous venons de la concevoir ne serait pas facile à réaliser avec les ressources actuelles de nos laboratoires. Nous ne pouvons pas obtenir des vitesses aussi fantastiques, et, si nous les obtenions, l'observateur ne distinguerait pas grand'chose. Mais nous avons pris un exemple énorme et les résultats en auraient été énormes, puisqu'il ne s'agissait de rien moins que de renverser l'ordre des temps.
Supposons que nous employions des moyens plus modestes, les résultats seront plus modestes, mais ils devraient, d'après les anciennes théories, être encore appréciables pour nos instruments. Or l'expérience de Michelson,—qui serait en plus petit celle que nous venons de décrire,—montre que les différences attendues ne sont pas observées. Donc les prémisses que nous avons posées, à savoir qu'il peut exister des vitesses supérieures à celle de la lumière dans le vide, ne correspondent pas à la réalité. Donc cette vitesse est un mur, une limite qui ne peut être dépassée.
Voyons les conséquences. Il y a à la base de la mécanique classique, telle que l'ont fondée Galilée, Huyghens, Newton, telle qu'on l'enseigne partout, un principe fondé en dernière analyse, comme tous ceux de la mécanique, sur l'expérience. C'est le principe de la composition des vitesses. Si un navire fait en eau calme du 10 kilomètres à l'heure et qu'il descende un fleuve dont la vitesse est de 5 kilomètres à l'heure, la vitesse du navire par rapport au rivage immobile sera, comme on peut le mesurer et le constater, égale à la somme de ces deux vitesses, c'est-à-dire à 15 kilomètres à l'heure. C'est la règle de l'addition des vitesses.
D'une manière plus générale, si un corps part du repos et sous l'action d'une force prend en une seconde une vitesse V, que va-t-il faire, si l'action de la force se prolonge pendant une deuxième seconde? Il prendra, d'après la mécanique classique, une vitesse 2V[6]. Supposons, en effet, un observateur animé d'une vitesse de translation V et qui se croit au repos. Pour lui, à la fin de la première seconde le corps paraît au repos (puisqu'il a la même vitesse que l'observateur). En vertu du principe de relativité classique, le mouvement apparent de ce corps doit être le même pour notre observateur que si ce repos était réel. C'est-à-dire qu'à la fin de la deuxième seconde, la vitesse relative du corps par rapport à l'observateur sera V, et comme l'observateur a déjà une vitesse V, la vitesse absolue du corps sera 2V. On verrait de même qu'elle serait 3V au bout de trois secondes, 4V au bout de 4 secondes et ainsi de suite. Elle pourrait donc croître au delà de toute limite, si la force agit pendant assez longtemps? Oui, dit la mécanique classique. Non, dit Einstein, puisque aucune vitesse ne peut dépasser celle de la lumière dans le vide.
[6] Comme exemple d'une force identique agissant pendant des temps successivement égaux à 1, 2 ou 3, on peut supposer 3 canons de même calibre, mais de longueurs égales à 1, 2 et 3 et dans lesquels les charges ou plutôt leur force propulsive sont identiques et constantes. On constate que les vitesses initiales des obus sont entre elles comme 1, 2 et 3.
Nous avons supposé un observateur qui possède la vitesse V par rapport à nous et qui se croit au repos. Pour lui, le corps observé était également au repos au début de la deuxième seconde, puisque sa vitesse était la même que celle de l'observateur. De ce que le mouvement apparent du corps est pour cet observateur, pendant la deuxième seconde, ce qu'il était pour nous pendant la première, la mécanique classique concluait que sa vitesse doublait pendant cette deuxième seconde. C'est qu'elle ne savait pas ce qu'Einstein nous a enseigné: que le temps et l'espace dont se sert cet observateur sont différents des nôtres.
Qu'est-ce qu'une vitesse? C'est l'espace parcouru pendant une seconde. Mais l'espace que mesure ainsi notre observateur en mouvement, et qu'il croit avoir une certaine longueur, est, en réalité, pour nous immobiles, plus petit qu'il ne croit, parce que les mètres dont il se sert, sont—Einstein nous l'a montré,—raccourcis par la vitesse, sans qu'il puisse s'en apercevoir.
Et alors les vitesses ne s'ajoutent plus exactement et au delà de toute limite pour un observateur donné, comme le voulait la mécanique classique.
Sous l'action d'une même force, disait cette mécanique, un corps subira toujours la même accélération, quelle que soit la vitesse déjà acquise. Sous l'action d'une même force, dit la mécanique nouvelle, le mouvement d'un corps s'accélérera d'autant moins qu'il sera plus rapide.
Voici par exemple un mobile. Dans le langage des physiciens, ce mot n'a pas du tout le même sens que dans celui des moralistes, puisque, pour les premiers, il signifie un corps en mouvement, et pour ceux-ci au contraire ce qui met un corps en mouvement! Sans m'appesantir sur toutes les réflexions que suggère cette antinomie verbale, qui n'est qu'un exemple de tout ce qui sépare la morale de la physique, je tiens à préciser que je prends ici ce mot dans le sens des physiciens.
Soit donc un mobile animé par rapport à moi d'une vitesse de 200 000 kilomètres par seconde. Sur ce premier mobile plaçons un observateur. Celui-ci projettera dans le même sens, et dans les mêmes conditions que nous avons fait, un deuxième mobile qui aura donc par rapport à lui une vitesse de 200 000 kilomètres. Mais, dit le relativiste, la vitesse résultante de ce deuxième mobile par rapport à nous ne sera pas, comme le voudrait l'addition classique des vitesses, 200 000 + 200 000 = 400 000 kilomètres par seconde. Elle sera seulement 277 000 kilomètres par seconde. Ce que le deuxième observateur en mouvement croyait être 200 000 kilomètres (parce que ses règles étaient raccourcies par sa vitesse) ne valait donc en réalité que 77 000 de nos kilomètres. Comment peut-on calculer cela? Mais très simplement en appliquant la formule de Lorentz que j'ai indiquée dans le chapitre ii et qui donne la valeur de la contraction due à la vitesse. On trouve alors très aisément ceci: si on a deux vitesses v1 et v2, et si on appelle w leur résultante, la mécanique classique affirmait que
La mécanique d'Einstein enseigne que cela n'est pas exact et que l'on a en réalité (C étant la vitesse de la lumière)
Je m'excuse d'introduire de nouveau (ce sera la dernière fois!) une formule algébrique dans cet exposé. Mais elle m'épargne un très grand nombre de périphrases et même de phrases, et elle est d'une telle simplicité que tous les lecteurs,—et ils sont assurément nombreux,—ayant la moindre teinture de mathématiques élémentaires, en saisiront immédiatement la vaste signification et les conséquences.
Cette formule exprime d'abord que, si grande qu'elle soit, la résultante de deux vitesses ne peut dépasser la vitesse de la lumière. Elle exprime aussi que si l'une des vitesses composantes est celle de la lumière, la vitesse résultante a, elle aussi, la même valeur. Elle exprime enfin qu'aux faibles vitesses auxquelles nous avons affaire dans la pratique (c'est-à-dire lorsque les vitesses composantes sont beaucoup plus petites que celle de la lumière) la résultante est, à très peu près, égale à la somme des deux composantes, comme le voulait la mécanique classique.
Celle-ci a été, ne l'oublions jamais, édifiée sur l'expérience. On comprend, dans ces conditions, que Galilée et ses successeurs, n'ayant eu affaire qu'à des mobiles relativement lents, soient arrivés à un principe apparemment vrai pour eux, mais qui n'est qu'une première approximation.
Par exemple, la résultante de deux vitesses, égales chacune à 100 kilomètres par seconde (ce qui dépasse infiniment les vitesses réalisables jadis par Galilée et Newton), est égale non pas à 200 kilomètres, mais à 199 km. 999 978. La différence est à peine de 22 millimètres sur 200 kilomètres! On conçoit que les expériences anciennes n'aient pu manifester des différences bien en deçà de celle-ci.
Parmi les vérifications de la nouvelle loi de composition des vitesses, on peut en citer une qui est frappante et qui ressort d'une expérience déjà ancienne de notre grand Fizeau.
Supposons un tuyau plein d'un liquide, d'eau par exemple, et que parcourt dans sa longueur un rayon lumineux. On connaît la vitesse de la lumière dans l'eau (qui est bien inférieure à sa valeur dans l'air ou dans le vide). Supposons maintenant que l'eau ne soit plus immobile dans le tuyau, mais coule, circule dans celui-ci avec une certaine vitesse. Quelle sera, à la sortie du tuyau, la vitesse du rayon lumineux ayant traversé ce liquide en mouvement? C'est ce que Fizeau s'est demandé, en variant les conditions de l'expérience.
La vitesse de la lumière dans l'eau est d'environ 220 000 kilomètres par seconde. Il s'agit ici d'une propagation si rapide qu'il y a une grande différence entre la loi d'addition classique et celle de la mécanique einsteinienne. Or les résultats de l'expérience de Fizeau concordent rigoureusement avec la formule d'Einstein et sont en désaccord avec celle de la mécanique ancienne. De nombreux observateurs, et récemment le physicien hollandais Zeeman, ont repris avec une extrême précision l'expérience de Fizeau, et les résultats ont été identiques.
Lorsqu'au siècle passé Fizeau fit cette expérience, on avait certes essayé d'en interpréter les résultats numériques à la lumière des anciennes théories. Mais cela avait conduit à des hypothèses tout à fait invraisemblables. C'est ainsi que Fresnel, pour expliquer les résultats de Fizeau, avait été obligé d'admettre que l'éther est partiellement entraîné par l'eau dans son mouvement, mais que cet entraînement partiel varie avec la longueur des ondes lumineuses propagées, et n'est pas la même pour les rayons bleus et pour les rayons rouges! Conséquence choquante et bien difficile à admettre.
La nouvelle loi de composition des vitesses donnée par Einstein rend compte, au contraire, immédiatement, et avec une extrême exactitude, des résultats de Fizeau. Ceux-ci sont en contradiction avec la loi classique.
Les faits, arbitres et critères souverains, montrent ici que la mécanique nouvelle correspond à la réalité, l'ancienne non, du moins sous sa forme traditionnelle.
Et voilà qui déjà nous fait toucher du doigt la beauté, la vérité profonde (la vérité scientifique étant ce qui est vérifiable) de la doctrine einsteinienne. Voilà qui nous démontre dès maintenant en quoi, magnifiquement, une théorie scientifique, une théorie physique se distingue d'un système philosophique arbitraire et plus ou moins cohérent.
L'expérience, juge suprême, décide en faveur de la mécanique einsteinienne, contre la mécanique classique. Nous en verrons d'autres exemples. Nous n'en trouverons aucun qui prononce en sens contraire.