Expériences et observations sur l'électricité faites à Philadelphie en Amérique
The Project Gutenberg eBook of Expériences et observations sur l'électricité faites à Philadelphie en Amérique
Title: Expériences et observations sur l'électricité faites à Philadelphie en Amérique
Author: Benjamin Franklin
Contributor: John Canton
David Colden
Translator: Thomas François Dalibard
Release date: December 25, 2008 [eBook #27610]
Most recently updated: January 4, 2021
Language: French
Credits: Produced by Sébastien Blondeel, Carlo Traverso, Rénald
Lévesque and the Online Distributed Proofreading Team at
https://www.pgdp.net (This file was produced from images
generously made available by the Bibliothèque nationale
de France (BnF/Gallica) at http://gallica.bnf.fr)
EXPÉRIENCES
ET
OBSERVATIONS
SUR
L'ÉLECTRICITÉ
FAITES
À PHILADELPHIE EN AMÉRIQUE
PAR
M. BENJAMIN FRANKLIN;
& communiquées dans plusieurs Lettres à M. P. COLLINSON, de la Société Royale de Londres.
Traduites de l'Anglois.
SECONDE ÉDITION
Revue, corrigée & augmentée d'un supplément considérable du même Auteur, avec des Notes & des Expériences nouvelles.
Par M. d'ALIBARD.
TOME PREMIER.
A PARIS
Chez DURAND, rue du Foin, au Griffon.
M. DCC. LVI.
Avec Approbation & Privilège du Roi.
À SON ALTESSE
SÉRÉNISSIME
MONSEIGNEUR
LE COMTE
DE LA MARCHE.
ONSEIGNEUR,
La permission que VOTRE ALTESSE SÉRÉNISSIME veut bien me donner de faire paroître cette Traduction sous son auguste nom, est une suite des bontés dont Elle a daigné m'honorer dès sa plus tendre jeunesse. Cet hommage public est en même tems un tribut de ma reconnoissance & de l'ancien & très-respectueux attachement que j'ai toujours eu pour la personne de VOTRE ALTESSE SÉRÉNISSIME. Son amour pour les Sciences, la protection qu'Elle accorde ouvertement aux Lettres & à ceux qui les cultivent, l'application qu'Elle donne Elle-même à l'Étude, son goût pour la Physique, l'attention avec laquelle Elle se fait rendre compte des nouvelles découvertes, sont autant d'autres motifs qui m'en imposent la loi. Trop heureux, MONSEIGNEUR, de pouvoir aujourd'hui réunir un devoir avec les vrais sentimens de mon coeur.
Je suis avec un très-profond respect,
MONSEIGNEUR,
DE VOTRE ALTESSE SÉRÉNISSIME,
Le très-humble &
très-obéissant
serviteur,
D'ALIBARD.
AVERTISSEMENT.
M
onsieur Franklin, habitant de Philadelphie dans la Colonie Angloise de Pensylvanie en Amérique, est l'Auteur des Lettres suivantes sur l'Électricité. M. Collinson son ami & son correspondant à Londres, à qui elles sont adressées, les a jugées dignes de l'impression. Elles étoient sous la presse, lorsqu'il en informa M. Franklin; celui-ci, qui ne les avoit pas écrites à cette intention, se pressa d'envoyer à son ami quelques changemens, qui n'étant pas arrivés à tems, ne purent être mis que comme additions & corrections à la fin de l'ouvrage. Il pria en même tems M. Collinson d'en envoyer un des premiers exemplaires à M. de Buffon, qui jugea de ces Lettres, comme on en avoit jugé en Angleterre où elles ont eu un applaudissement général. Occupé d'ouvrages bien plus importans dont il ne veut pas se distraire, M. de Buffon m'a engagé à les faire paroître en François. Il ne s'agissoit que de rendre exactement des choses simples, aussi ne s'est-on attaché qu'à les traduire littéralement, à bien rendre le sens de l'Auteur & à éclaircir les endroits qui ont paru un peu obscurs dans l'original. Pour la commodité des lecteurs, on a rapporté en notes au bas des pages, les changemens que Mr. Collinson avoit fait imprimer comme additions & corrections à la suite des Lettres.Quoique la plupart des Physiciens se soient exercés depuis plusieurs années sur la matière de l'électricité: quoique leur zèle ait été récompensé par des succès assez brillans, on verra par les recherches & par les découvertes de M. Franklin, que cette matière est encore neuve à bien des égards. On sentira en même tems qu'il y a cependant lieu d'espérer qu'en multipliant, à son exemple, les expériences & les observations dans des vûes nouvelles, on parviendra un jour à pénétrer un mystère qui n'importe peut-être pas moins à l'utilité commune qu'à la la curiosité de l'esprit. On y arrivera même d'autant plus vite & plus sûrement, qu'on se hâtera moins de hazarder des systèmes. On n'a pas encore assez de faits sur ce sujet pour qu'il soit permis d'y joindre des hypothèses.
«C'est (dit M. de Buffon 1) par des expériences fines raisonnées & suivies que l'on force la nature à découvrir son secret; toutes les autres méthodes n'ont jamais réussi, & les vrais Physiciens ne peuvent s'empêcher de regarder les anciens systèmes comme d'anciennes rêveries, & sont réduits à lire la plupart des nouveaux comme on lit les Romans. Les recueils d'expériences & d'observations sont donc les seuls livres qui puissent augmenter nos connoissances. Il ne s'agit pas, pour être Physicien, de sçavoir ce qui arriveroit dans telle ou telle hypothèse, en supposant, par exemple, une matière subtile, des tourbillons, une attraction, &c. Il s'agit de bien sçavoir ce qui arrive, & de bien connoître ce qui se présente à nos yeux; la connoissance des effets nous conduira insensiblement à celle des causes, & l'on ne tombera plus dans les absurdités qui semblent caractériser tous les systèmes; en effet l'expérience ne les a-t-elle pas détruits successivement? ne nous a-t-elle pas montré que ces élémens que l'on croyoit autrefois si simples, sont aussi composés que les autres corps? ne nous a-t-elle pas appris ce que l'on doit penser du chaud, du froid, du sec & de l'humide, de la pesanteur & de la légèreté absoluë, de l'horreur du vuide, des loix du mouvement autrefois établies, de l'unité des couleurs, du repos & de la sphèricité de la terre, & si je l'ose dire des Tourbillons? Amassons-donc toujours des expériences & éloignons-nous, s'il est possible, de tout esprit de système, du moins jusqu'à ce que nous soyons instruits, nous trouverons assûrément à placer un jour ces matériaux, & quand même nous ne serions pas assez heureux pour en bâtir l'édifice tout entier, ils nous serviront certainement à le fonder, & peut-être à l'avancer au-delà même de nos espérances.» C'est cette méthode que M. Franklin a suivie à l'imitation du grand Newton & des plus excellens Physiciens, méthode qui doit suffire pour prévenir le public en faveur de l'ouvrage qu'on lui présente.
Mais il ne suffit pas de s'attacher uniquement à la voye de l'expérience, à moins que d'être, comme notre auteur, fécond en moyens, ingénieux en découvertes & heureux en applications; il ne faut pas, comme tant d'autres Physiciens sans génie, se permettre de tirer des inductions qui ne sont ni justes ni naturelles, déduire des conséquences qui ne sont fondées que sur des suppositions vagues & étrangères au sujet. Il faut au contraire dans une matière aussi nouvelle que l'est celle-ci, se contenter de considérer les faits sous de nouveaux points de vûe, pour tâcher de les généraliser & d'en former un ordre systématique & suivi. C'est ce qu'a fait M. Franklin. Instruit, par exemple, des effets surprenans de la bouteille électrique, le premier objet qu'il s'est proposé, a été d'examiner comment elle acquiert la vertu électrique, comment elle la conserve, quoiqu'on la touche, & comment elle la communique. Ayant toujours l'expérience & l'observation pour guides, il a bientôt reconnu que l'électricité est inhérente & inséparable de la matière: que le verre en contient autant qu'il en peut contenir, & toujours la même quantité: qu'électriser la bouteille, ce n'est pas y faire entrer plus de matière électrique qu'elle n'en avoit auparavant, mais accumuler sur une de ses surfaces autant de cette matière qu'il y en a dans les deux surfaces ensemble, ce qui ne se fait que parce que l'une en rejette précisément la même quantité que l'autre en reçoit: que les deux surfaces de la bouteille électrisée sont toujours prêtes l'une à rendre ce qu'elle a de plus, & l'autre à recevoir ce qu'elle a de moins que sa quantité naturelle: qu'elles ne peuvent le faire l'une sans l'autre: que l'équilibre ne sçauroit se rétablir entr'elles par la communication intime de l'une à l'autre, mais seulement par une communication extérieure non électrique: qu'ainsi la bouteille reste chargée tant que cette communication extérieure n'est pas établie, & qu'enfin l'électricité ne sçauroit être communiquée par la bouteille, qu'autant que cette bouteille reçoit par une voye la même quantité de matière électrique qu'elle donne par l'autre.
Ces premières connoissances ont conduit notre auteur à trouver les moyens de faire paroître l'électricité de deux manières tout-à-fait opposées, l'une en augmentant l'électricité naturelle dans les corps que nous nommons non-électriques, & il appelle cette augmentation électricité positive; l'autre en diminuant l'électricité naturelle; il nomme celle-ci négative. De là sont venus les termes nouveaux électriser en plus, électriser en moins, dont les significations répondent assez bien à celles qu'ils ont dans l'algèbre.
L'analyse de la bouteille électrique à achevé de confirmer M. Franklin dans l'opinion où il étoit dès auparavant que l'électricité dans cette bouteille est attachée au verre précisément comme verre, & que les corps non-électriques qu'on y ajoute ne servent que, comme l'armure d'une pierre d'aimant, à unir les particules de la matière électrique surabondante, & à les tenir rassemblées sur l'une des surfaces du verre, étant toujours prêtes à s'échapper par le premier endroit où elles trouveroient passage pour aller à l'autre. En conséquence de ces découvertes; il a imaginé quantité d'autres expériences dont l'enchaînement & le résultat sont la confirmation des premières & l'apologie de son jugement. Néanmoins quelques justes que soient ses idées, quoiqu'elles soient toutes appuyées sur des faits, l'auteur ne les propose que comme des conjectures, & l'on verra que sa modestie est égale à sa pénétration. Mais ce seroit s'écarter de la retenuë dont il donne l'exemple, que de chercher à faire valoir son mérite par des louanges dont il n'a pas besoin, & qui ne pourroient être que suspectes de la part d'un traducteur. Il vaut mieux le laisser lire & s'en rapporter au jugement du public.
Le pays qu'abite M. Franklin est des plus favorables pour les expériences électriques; autant les chaleurs y sont excessives en été, autant le froid y est rigoureux en hyver; l'on passe subitement de l'un à l'autre sans presque s'appercevoir ni de la douceur du printems, ni de la température de l'automne. Le vent sud ou nord amène les deux saisons opposées; mais dans l'une & dans l'autre on y jouit presque toujours du plus beau ciel. Les nuages épais y dérobent rarement la vûe du soleil & des étoiles: les pluyes n'y sont jamais de longue durée, & les brouillards y sont presque inconnus. Ainsi la sécheresse du tems & la froideur du vent du nord contribuent beaucoup à y rendre plus sensibles la force & les effets de l'électricité. On en trouvera des preuves incontestables dans plusieurs endroits cet ouvrage. Malgré la différence de climat, je n'ai pas voulu publier cette traduction, sans avoir du moins essayé de répéter les expériences qui y sont rapportées; après avoir parfaitement réussi à faire celles que j'ai jugées les plus intéressantes & les plus difficiles dans l'exécution, quelques-unes m'ont paru mériter que j'en fisse hommage à l'Académie Royale des Sciences. Je lui rendis compte le 22. Décembre 1751. de mon succès dans les expériences du tableau magique & de la fusion des métaux; j'y fis voir des lames de verre sur lesquelles on distinguoit aisément l'or, l'argent, le cuivre & l'étain que l'électricité avoit par sa violence incorporés dans la substance même du verre. J'avois employé pour me procurer le puissant dégré d'électricité nécessaire, une bouteille de verre blanc & mince tenant environ deux pintes dont j'avois fait argenter extérieurement le fond jusqu'au milieu de sa hauteur, & j'y avois mis à peu près quinze livres de menu plomb bien sec. Ces métaux sont sur ces lames dans un état de vitrification, inattaquables à l'eau forte & à l'eau régale, suivant les épreuves que j'en avois faites auparavant d'après les assurances de M. Franklin. Enfin ces expériences aussi bien que beaucoup d'autres, avoient si pleinement satisfait à mes désirs, eu égard au tems, à la saison & au climat, qu'elles ne laissoient nullement lieu de douter de la certitude de celles que je n'avois pas encore tentées.
Dès que la première édition de cette traduction fut achevée, j'en envoyai un exemplaire à M. Franklin, ce qui me mit en correspondance directe avec lui. Je lui fis part dans le tems, du succès de mon expérience sur le tonnerre, & lui envoyai le mémoire que j'en avois donné à l'Académie Royale des Sciences le 13. Mai 1752. tel qu'il est dans le second volume de cet ouvrage; il en fut charmé & m'envoya avec sa réponse, son premier supplément, dont je vérifiai pareillement les expériences. Le second ne m'a été rendu que long-tems après.
J'ai trouvé dans cette dernière brochure d'excellentes observations à opposer aux critiques qui avoient paru contre mon auteur, & auxquelles j'avois entrepris de répondre; c'est ce qui m'a engagé à resserrer ce que j'avois écrit dans ce dessein, pour ne pas multiplier les êtres sans nécessité. Je me suis contenté d'ajouter à la suite des principales expériences critiquées quelques-unes des réponses dont j'avois eu intention de faire un ouvrage séparé. Au lieu d'être mises en notes, elles y sont distinguées par des guilmets, ce qui m'a semblé plus commode pour les lecteurs. Les expériences contenuës dans ce second supplément ne sont pas moins sûres que celles qui avoient été publiées auparavant. Elles ont été répétées avec le même succès. Sans avoir égard aux dates des lettres, je les ai arrangées tout différemment de ce qu'elles étoient dans la première édition de cet ouvrage; j'en ai même partagé quelques-unes en plusieurs fragmens que j'ai placés suivant l'ordre des matières: c'est dans la même vûe que j'ai mis une suite uniforme aux paragraphes.
Enfin je n'ai rien négligé pour répandre dans cette seconde édition toute la clarté qui a pû dépendre de mes soins. Ils se trouveront bien récompensés, si les changemens que j'ai faits du consentement de Mr. Franklin, sont approuvés du public.
Au reste j'ai pensé que ceux qui n'ont pas fait une étude particulière de l'électricité seroient bien-aises d'en connoître les progrès depuis son origine jusqu'aux découvertes de M. Franklin. L'histoire qu'en a faite M. de Secondat pour l'Académie de Bordeaux en 1748. me rendoit ce travail facile; on verra que j'ai profité de cet excellent ouvrage; j'y ai ajouté des choses ou qui n'étoient pas venuës alors à la connoissance de M. de Secondat, ou qu'il avoit crû devoir négliger, & j'y ai joint les découvertes qui ont été faites sur le même sujet depuis son histoire jusqu'à présent. J'espère qu'en allant par cette voye à mon objet principal, qui est de mettre les Lecteurs en état de mieux juger du mérite de mon auteur, & de la valeur de son ouvrage, je ne leur laisserai rien à désirer sur les faits principaux de l'électricité.
HISTOIRE ABRÉGÉE
DE
L'ÉLECTRICITÉ.
L
a première chose qui a fait reconnoître l'Électricité, est la vertu d'attirer que l'on a remarquée en certains corps, après qu'ils ont été frottés. Le premier de tous, dans lequel ont ait observé cette vertu, c'est l'ambre jaune connu des anciens sous le nom d'Electrum; c'est de ce nom que cette vertu a retenu celui d'Électricité, & l'on appelle corps électriques ceux qui en sont pourvûs. Il seroit difficile & peut-être impossible de déterminer le tems où l'on a observé pour la première fois que l'ambre-jaune, après avoir été frotté, attire les brins de paille dont on l'approche. Ce qu'en disent quelques-uns des auteurs anciens qui en ont fait mention, comme Thalès de Milet, Plutarque, Pline, &c. prouve que l'observation de ce phénomène est très-ancienne, aussi ne se trouve-t-il guères de traités de Physique où il n'en soit parlé; mais personne que l'on sçache ne s'étoit avisé de faire sur ce sujet des recherches suivies avant Gilbert médecin Anglois qui vivoit vers l'an 1600. après avoir recueilli sur l'aimant les découvertes de ceux qui l'avoient précédé & avoir fait lui-même un grand nombre d'observations nouvelles sur les propriétés de cette merveilleuse pierre, il crut devoir considérer les propriétés de l'Electrum qui paroissent avoir du rapport à celles de l'aimant. Il avoit pû d'abord regarder cette résine comme une espèce d'aimant dont la vertu a besoin d'être excitée par le frottement. Quoi qu'il en soit, il parle de cette vertu comme d'une chose que l'on connoissoit de tout tems. On avoit aussi reconnu la même propriété dans le Jayet, mais cette remarque étoit récente. Il s'agissoit de la chercher encore dans d'autres corps, c'est à quoi il s'appliqua. L'ambre-jaune étoit mis alors au rang des choses les plus précieuses; il servoit à l'ornement des autels & aux parures inventées par le luxe. Le Jayet étoit aussi une matière fort estimée; avant l'invention des glaces on l'employoit à faire des miroirs.Gilbert, qui avoit tant étudié toutes les propriétés de l'aimant, avoit sans doute remarqué qu'il falloit une moindre force pour mettre en mouvement une aiguille mince & légère posée en équilibre sur un pivot bien poli, comme sont les aiguilles aimantées, que pour élever d'une seule ligne un corps beaucoup plus léger. C'est pourquoi il se servit habilement de ce moyen pour reconnoître l'électricité dans les substances où elle est trop foible pour se manifester d'une autre manière. «Faites, dit-il, une aiguille de quelque métal que ce soit, de la longueur de deux ou trois pouces, légère & très-mobile sur un pivot, à la manière des aiguilles aimantées: approchez d'une des extrémités de cette aiguille de l'ambre jaune ou une pierre précieuse légèrement frottée, luisante & polie, l'aiguille se tournera sur le champ.» Ce fut vraisemblablement par ce moyen qu'il reconnut que non-seulement l'ambre & le jayet ont cette propriété d'attirer, mais qu'elle est commune à la plupart des pierres précieuses, comme le diamant, le saphir, le rubis, l'opale, l'améthyste, l'aigue-marine; le cristal de roche: qu'on la trouve aussi dans le verre, la bélemnite, le soufre, le mastic, la cire d'Espagne, la résine, l'arsenic, le sel-gemme, le talc, l'alun de roche. Toutes ces différentes matières, quoiqu'avec différens dégrés de force, lui parurent attirer non-seulement les brins de paille, mais tous les corps légers, comme le bois, les feuilles, les métaux en limaille ou en feuille, les pierres, les terres, & même les liqueurs comme l'eau & l'huile.
La Physique est encore redevable à Gilbert de beaucoup d'autres observations sur l'Électricité. C'est lui qui nous a appris qu'elle est plus facilement excitée par un frottement léger & rapide que par un frottement plus rude: que le tems le plus sec & le vent de nord le plus froid sont les plus favorables pour l'Électricité: que l'humidité de l'air & à plus forte raison le souffle des animaux l'affoiblissent & même la détruisent en peu de tems: que l'eau produiroit le même effet, si l'on moüilloit le corps électrique: qu'une toile mise entre ce corps & celui qu'on veut attirer, empêche totalement l'attraction: qu'une étoffe de soye placée de même ne l'empêche pas entièrement: que les corps électriques n'attirent point la flamme d'une bougie, mais attirent fortement la fumée de cette bougie éteinte.
Pour expliquer les phénomènes de l'électricité, ceux de l'aimant, & ceux de la pésanteur, Gilbert imagina des hypothèses ingénieuses, auxquelles pourtant il se fioit moins qu'à ses expériences. L'attraction, suivant son opinion, est causée par des écoulemens très-subtils; l'air est l'écoulement électrique de la terre & l'instrument de la pésanteur. C'est peut-être sur cette idée de Gilbert que le célèbre Otto de Guerike s'avisa de faire des observations sur un globe de soufre qu'il excitoit à l'électricité par un mouvement qui imitoit en quelque forte celui de la terre.
Otto de Guerike, dit l'ingénieux M. Dufay dans son premier mémoire sur l'électricité, a imaginé de faire tourner sur son axe par le moyen d'une manivelle, une boule de soufre grosse comme la tête d'un enfant. Cette boule étant muë avec rapidité, si l'on applique la main dessus elle devient électrique & attire les corps légers qui lui sont présentés; si on la détache de la machine sur laquelle elle a dû être posée pour la faire tourner & qu'on la tienne à la main par l'axe, non-seulement elle attire une plume, mais elle la repousse ensuite, & ne l'attire plus de nouveau que la plume n'ait touché quelqu'autre corps. Il remarque que la plume ainsi chassée par le globe attire tout ce qu'elle rencontre, ou va s'y appliquer, si elle ne peut pas l'attirer vers elle; mais que la flamme d'une chandelle la chasse & la repousse vers le globe.... Si l'on suspend un fil au-dessus du globe, ensorte qu'il ne le touche point, & qu'on approche le doigt du bout inférieur de ce fil, on verra le fil s'éloigner du doigt. Il a aussi remarqué que la vertu électrique du globe se transmettoit par le moyen d'un fil jusqu'à la distance d'une aune, & que lorsque le globe avoit été rendu électrique par la rotation & par la main appliquée dessus, il conservoit sa vertu pendant plusieurs heures. Tenant l'axe de ce globe dans une position verticale, il promenoit une plume par toute la chambre; sans qu'elle s'appliquât au globe.» Il remarqua aussi que le globe frotté dans l'obscurité répandoit de la lumière.
Otto de Guerike avoit pour contemporain & pour émule le fameux Boyle à qui nous avons obligation d'un si grand nombre de belles découvertes. Ce dernier chercha & trouva la vertu électrique dans un grand nombre de corps où Gilbert ne l'avoit point cherchée, & dans quelques-uns de ceux où il l'avoit cherchée inutilement. Pour éprouver si l'air avoit quelque part à l'électricité, il suspendit dans une fiole au-dessus d'un corps léger un morceau d'ambre-jaune excité à l'électricité; ayant ensuite pompé l'air de la fiole, il laissa descendre l'ambre-jaune près du corps léger, qui fut attiré. Il reconnut par-là que la vertu électrique une fois excitée se conserve dans le vuide, & que son action ne dépend point de l'air.
M. Boyle avoit fait beaucoup de recherches sur les corps qui donnent de la lumière dans l'obscurité, en particulier sur le ver luisant; y ayant emprunté un diamant qu'on disoit avoir la propriété d'être lumineux dans les ténèbres, il observa que ce diamant étant frotté dans l'obscurité contre quelqu'étoffe que ce fût, devenoit en effet non-seulement lumineux, mais encore électrique, comme l'avoit observé Gilbert. Il reconnut bientôt les mêmes propriétés dans plusieurs autres.
L'Électricité resta long-tems négligée après Boyle; mais les grandes découvertes de Newton sur les propriétés de la lumière & sur le système de l'attraction engagèrent vraisemblablement Hauksbée de la Société Royale de Londres à faire des recherches sur les mêmes sujets & sur l'électricité. Ayant inventé une machine pour faire tourner rapidement un corps sous le récipient de la machine pneumatique, il s'en servit pour faire frotter dans le vuide un morceau d'ambre jaune contre de la laine. Ce frottement produisit une lumiére beaucoup plus vive que le même frottement dans l'air; après l'opération l'ambre jaune, aussi bien que la laine lui parurent un peu brûlés.
On avoit sans doute remarqué que de tous les corps électriques, le verre est un de ceux en qui le frottement excite une plus forte électricité. Hauksbée s'avisa d'employer dans ses expériences un tube ou cylindre creux de verre. En le frottant rapidement dans sa main, un papier entre-deux, il le rendoit électrique, & faisoit par son moyen toutes les expériences qu'Otto de Guerike avoit faites avant lui avec un globe de soufre. Il observa de plus qu'un tube dont on a pompé l'air, ne s'électrise que très-foiblement, & que si on y laisse rentrer l'air il acquiert beaucoup d'électricité sans être frotté de nouveau. Quand on frotte un tube dans l'obscurité, une lumière fuit la main qui frotte, & si l'on approche de ce tube ainsi excité une autre main, ou quelqu'autre corps, comme du métal, de l'yvoire, du bois, &c. il en sort une étincelle accompagnée d'un bruit assez semblable au pétillement d'une feüille verte jettée au feu, mais moins fort. Quand on frotte le tube vuide d'air, la lumière est plus vive, mais toute dans son intérieur, & l'on n'en peut tirer d'étincelle.
Hauksbée imagina aussi de faire tourner sur son axe un globe creux de verre par le moyen d'une rouë & d'une corde qui passe sur la circonférence de cette rouë & sur une poulie fixée sur l'axe du globe. Il excita l'électricité en frottant ce globe, mais il n'en tira pas de plus grands effets que de son tube. L'électricité qui jusques-là ne s'étoit manifestée que par le frottement, Hauksbée la découvrit dans une substance qui n'avoit point été frottée; il remarqua que si on laisse refroidir de la résine qui a été fondüe, & que, si, avant qu'elle soit tout-à-fait refroidie, on en approche du cuivre en feüilles, elle l'attire à la distance d'un pouce ou deux, sans aucun frottement précédent.
M. Gray continua avec succès les recherches électriques de Boyle & de Hauksbée; ayant voulu éprouver s'il y avoit quelque différence dans l'attraction du tube lorsqu'il étoit bouché par les deux bouts & lorsqu'il ne l'étoit pas, il n'en apperçut aucune; mais comme il tenoit une plume ou duvet au-dessus du bouchon de liége dont le bout supérieur du tube étoit bouché, il remarqua que cette plume étoit attirée & ensuite repoussée par le liége de la même manière qu'elle a coutume de l'être par le tube. Cette observation le confirma dans une pensée qu'il avoit euë autrefois, que, comme le tube frotté dans l'obscurité communique de la lumière aux autres corps par l'attouchement, il pouvoit bien aussi leur communiquer de l'électricité. Le liége effectivement n'avoit cette vertu attractive que par communication du tube excité à l'électricité. Il s'en assura encore d'une autre façon: ayant fixé au bout d'un bâton de sapin d'environ quatre pouces de long une boule d'yvoire d'un peu plus d'un pouce de diamètre, il enfonça l'autre bout du bâton dans le bouchon de liége: ayant ensuite frotté le tube, il vit avec plaisir que la boule attiroit & repoussoit le duvet avec plus de force que n'avoit fait le liége. Il répéta cette expérience avec des bâtons plus longs & enfin avec un de vingt-quatre pouces, & trouva toujours les mêmes effets.
Au lieu de bois M. Gray se servit dans la suite d'un fil de fer, puis d'un fil de laiton, & eut encore le même succès; mais comme les vibrations de ces fils de fer, & de laiton, causées par le frottement du tube, étoient incommodes, surtout lorsque les fils étoient longs de deux ou trois pieds, il imagina de suspendre la boule à l'extrémité d'une ficelle nouée au tube par son autre extrémité; étant sur un balcon élevé de trente-six pieds, il laissa pendre la boule ainsi attachée au tube par le moyen d'une ficelle de cette longueur; le tube étant frotté, la boule attira & repoussa du cuivre en feuilles qui étoit au-dessous d'elle.
M. Gray essaya ensuite de transmettre en ligne horizontale l'électricité à de bien plus grandes distances; il y réussit d'abord en se servant pour cela d'une ficelle soutenuë horizontalement à quelque distance de terre sur des fils de soye, & transmit l'électricité à cent quarante pieds; mais comme il vouloit pousser plus loin son expérience, les fils de soye s'étant rompus, il leur substitua des fils-d'archal de la même finesse; car il s'imaginoit que le succès de l'expérience dépendoit de la finesse de ces fils, qu'il croyoit trop minces pour pouvoir intercepter une partie sensible de la force électrique communiquée par le tube à la ficelle & à la boule. Quand il vint à frotter le tube, l'électricité ne fut point transmise à l'extrémité de la ficelle. Il reconnut de là que le succès de la première expérience ne venoit pas de la finesse des fils de soye, puisque les fils-d'archal de la seconde étoient aussi minces, mais qu'il venoit de la nature même de la soye. Instruit par ce contre-tems M. Gray vint depuis à bout de transmettre l'électricité à une distance de sept cens pieds.
Il découvrit encore que la communication de l'électricité pouvoit se faire par la seule approche du tube, sans qu'il touchât le corps auquel on vouloit la communiquer. Ayant suspendu horizontalement un enfant sur des cordons de crin, en approchant de ses pieds le tube bien frotté, il l'électrisa au point que son visage & ses mains attirèrent des feüilles de cuivre. Il plaça cet enfant debout sur deux pains de résine d'environ huit pouces de diamètre & deux pouces d'épaisseur, un sous chaque pied. Ayant ensuite approché le tube bien frotté des cuisses de l'enfant, ses mains attirèrent & repoussèrent alternativement des feüilles de cuivre que l'on avoit mises au-dessous.
Mr. Dufay de l'Académie Royale des Sciences, informé des découvertes de M. Gray, se mit aussi à travailler sur l'électricité. Après un nombre infini d'expériences dont on n'indiquera que les principales, il nous a appris qu'il n'y a point de corps, à l'exception des métaux & des animaux qui ne soit électrique. Les métaux & les animaux s'électrisent fortement ou deviennent fortement électriques, lorsqu'étant soutenus sur des cordons de soye ou de crin, sur des gâteaux de résine, sur du verre, &c. on en approche le tube excité à l'électricité. On doit donc entendre par corps électriques ceux qui le sont naturellement qui n'ont besoin que d'être frottés pour en donner des preuves, & par corps non-électriques ceux qui ne peuvent devenir électriques que par communication, comme sont les métaux.
En répétant avec un tube de verre & des feüilles d'or une expérience d'Otto de Guerike, dans laquelle une petite plume avoit été attirée, repoussée & soutenuë en l'air au-dessus du globe de soufre, M. Dufay observa que la feüille d'or alla s'attacher à un morceau de gomme-copal qu'il lui présentoit & y demeura. Cela lui fit soupçonner que l'électricité de la gomme-copal étoit différente par sa nature de l'électricité du verre, puisque l'une attiroit ce que l'autre repoussoit. Cette observation le porta à faire plusieurs autres expériences, d'où il crut pouvoir conclure qu'il y avoit en effet deux sortes d'électricités. Il nomma l'une vitrée & l'autre résineuse; mais les Physiciens n'ont pas admis cette distinction. On verra cependant dans la suite de cet ouvrage qu'elle est bien fondée, & qu'un globe de soufre détruit l'effet d'un globe de verre.
M. Dufay répétant de même l'expérience de M. Gray, dans laquelle on électrise un enfant suspendu sur des cordons de crin ou de soye, & s'étant mis lui-même à la place de l'enfant; quelqu'un voulut ramasser une feüille d'or qui s'étoit attachée à sa jambe; dans l'instant ils sentirent l'un à la jambe & l'autre au doigt une douleur comme une piqûre, & l'on entendit un pétillement semblable à celui du tube lorsqu'on en approche le doigt. Cette douleur & ce pétillement sont accompagnés d'une étincelle visible même en plein jour.
Cette étincelle n'avoit été regardée jusques-là que comme la lumière de certains phosphores qui ne brûlent point, tels que le bois pourri & les vers luisans: mais la douleur fit penser à M. Dufay que l'électricité étoit un véritable feu. On s'est appliqué depuis à en rendre les effets plus sensibles.
Les Physiciens d'Allemagne profitant de tout ce qui avoit été découvert avant eux sur le sujet de l'électricité, imaginèrent de reprendre le globe de verre, dont Hauksbée n'avoit pas tiré un meilleur parti que du tube & qu'il avoit abandonné trop légèrement. Ce qui les y engagea fut sans doute la réflexion que le verre étant plus électrique, un globe de cette matière doit produire de plus grands effets que le globe de soufre d'Otto de Guerike, & qu'étant susceptible d'une friction plus rapide & plus long-tems continuée, l'usage de ce globe devoit être plus facile & plus avantageux que celui du tube de Hauksbée. Ils employèrent des globes & des rouës plus grandes & les disposèrent de la même manière que la meule & la rouë dont se servent les Couteliers. Par ce moyen ils réussirent d'abord à rendre beaucoup plus sensibles tous les phénomènes de l'électricité déjà connus. Ils firent encore de très-belles découvertes dont les Journaux d'Allemagne de 1745. ont rendu compte, & dont on ne rapportera ici qu'une seule.
Si, en faisant tourner & frotter le globe de verre, on en approche le bout d'un grand tuyau de fer blanc, sans qu'il touche le globe, & qu'une personne montée sur un gâteau de résine tienne d'une main ce tuyau par l'autre extrémité, cette personne est électrisée, & acquiert après deux ou trois révolutions du globe une puissance flammifique assez forte pour allumer avec un de ses doigts, avec une canne ou avec une épée de l'esprit de vin un peu échauffé. Le même effet s'ensuit lorsque la personne électrisée tient dans sa main le vase qui contient la liqueur, & la fait toucher par une autre personne est sur le plancher. Dès que le doigt approche de la liqueur, il en sort une étincelle bruyante qui enflamme l'esprit de vin. On peut de même enflammer de la poix, de la résine, de la cire d'Espagne, du soufre & même de la poudre à canon, pourvû que ces matières soient en fusion, & conséquemment échauffées. Cette expérience réussit aussi quand on électrise avec le tube, mais les étincelles sont foibles & l'effet n'en est pas si sûr qu'avec le globe.
L'année 1746. est l'époque la plus marquée de l'Électricité.
Ce fut au commencement de cette année que MM. Muschenbroek & Allaman illustres citoyens de Leyde communiquèrent à l'Académie Royale des Sciences de Paris l'expérience suivante que le hazard avoit fait trouver à M. Cuneus, lorsqu'il s'amusoit à revoir chez lui les phénomènes électriques qu'il avoit admirés chez M. Muschenbroek. Suspendez sur des cordons de soye dans une situation horizontale une verge de fer ou un canon de fusil dont un des bouts soit près du globe, pour en recevoir l'électricité par communication: laissez pendre à son autre bout un fil-d'archal ou de laiton; pendant qu'on électrise la verge de fer, tenez d'une main un vase de verre rond & en partie plein d'eau dans laquelle plonge le fil de métal suspendu: avec l'autre main essayez d'exciter une étincelle à tel endroit que vous voudrez de la verge de fer ou du fil de métal qui pend au bout & qui plonge dans l'eau du vase; vous ressentirez une commotion très-forte & très-subite dans les deux bras, dans la poitrine & dans tout le corps. Le coup est plus fort quand le globe est plus gros, plus frotté, quand le vase qui contient l'eau est plus large, quand la verge de fer qui conduit l'électricité, est plus grande, ensorte qu'on pourroit blesser, peut-être même tuer quelqu'un qui s'y exposeroit imprudemment.
Le bruit de cette expérience se répandit bientôt dans tout le monde sçavant: elle exerça l'industrie des Physiciens, & tout le monde voulut être Physicien. Chacun la répéta, & fit tout son possible pour y ajouter. On trouva bientôt le moyen d'en rendre l'appareil plus simple & plus commode; au lieu de suspendre la verge de fer près du globe & à la même hauteur, on la tient plus élevée, & on laisse pendre de son extrémité voisine du globe une bande de métal bien mince ou un fil de fer qui touche l'équateur du globe pendant qu'il tourne sur son axe & qu'il est frotté. La verge s'électrise aussi promptement & aussi fortement par cette méthode que par celle de M. Muschenbroek, & le globe est plus en sureté.
On se sert d'une bouteille de verre mince: on la remplit d'eau jusqu'au collet, & on la bouche d'un bouchon de liége traversé d'un fil-d'archal, qui y reste fixé de telle manière qu'une partie de ce fil-d'archal est plongée dans l'eau de la bouteille, & une autre partie est au-dessus du bouchon, courbée en crochet. Par ce moyen on peut suspendre la bouteille à la verge de fer, en l'y accrochant, ou l'en séparer à volonté, quand elle est chargée d'électricité.... On peut aussi l'électriser à la main, sans la suspendre à la verge de fer, & même sans se servir de cette verge. Il ne s'agit que d'en présenter le crochet ou auprès de la verge ou auprès du globe dans le temps qu'il est en mouvement & qu'il est frotté.... On peut de même décharger la bouteille électrisée sans le secours de la verge de fer, en tenant la bouteille dans une main, & cela de trois manières, par l'expérience de Leyde, par l'approche d'un corps non-électrique, ou par l'opposition d'une pointe non-électrique. Dans le premier cas il ne faut que tirer une étincelle du fil-d'archal avec l'autre main: l'on reçoit la commotion, & la bouteille est déchargée à l'instant; dans le second l'on approche le fil-d'archal d'un corps non-électrique pour tirer l'étincelle; mais il faut avoir attention à ne pas tenir ce corps de l'autre main, car on seroit frappé; dans le troisième cas il ne s'agit que d'opposer à quelques pouces de distance du crochet une pointe de métal, comme celle d'une aiguille, d'un poinçon, &c. la bouteille se déchargera lentement & insensiblement sans bruit, sans explosion & sans commotion. On voit dans les tems favorables la pointe d'une aiguille tirer le feu électrique à plus de six pieds de la bouteille, & cela s'apperçoit par une petite lumière qui paroît dans l'obscurité à la pointe de l'aiguille.
Quand la bouteille préparée, comme on vient de le dire, est bien électrisée, on peut la transporter fort loin, ou la garder plusieurs jours dans cet état, sans qu'elle perde beaucoup de sa force électrique; il n'y a point d'autre précaution à prendre que de la déposer sur un corps électrique, dans un endroit qui ne soit pas trop exposé à l'humidité de l'air ou à la poussière.
L'on a trouvé ensuite que dans l'expérience de Leyde, si au lieu d'une seule personne, on forme un grand cercle ou une chaîne de plusieurs, en quelque nombre que ce soit, qui se tiennent tous par la main: que le premier de la chaîne soutienne par le fond la bouteille électrisée, & que le dernier tire une étincelle du fil-d'archal, ils sentiront tous au même instant la commotion dans les bras & dans la poitrine. Cette expérience a été faite à Versailles devant le Roi sur deux cens quarante personnes à la fois. Le même effet s'ensuivroit encore si les acteurs, au lieu de se tenir par la main, étoient joints ensemble par des fils ou des chaînes de métal, par l'eau tranquille d'un grand vase ou même d'un bassin, dans laquelle ils auroient les mains plongées.
L'on a de même découvert que la force de l'électricité est plus grande, lorsque la verge de fer, que l'on nomme le premier conducteur, est plus longue; que l'étenduë en superficie du premier conducteur contribuë davantage à l'augmentation de cette force que son étenduë en solidité & que la longueur est celle des trois dimensions qui lui est la plus favorable.
Il n'y a presque personne qui ne sçache que la propagation du son n'est point aussi rapide que celle de la lumière. Si l'on voit tirer une pièce de canon de quelques centaines de toises, on apperçoit la flamme sortir de son embouchure long-tems avant d'en entendre le coup; en général plus l'on est éloigné, plus on remarque de distance entre l'un & l'autre. Il est cependant certain que dans ce cas la lumière & le son partent en même tems; mais l'air qui nous en transmet les sensations est plus facilement ébranlé par l'un que par l'autre; & l'on est venu à bout de connoître cette différence. C'est dans la même vuë qu'un sçavant Physicien 2 a voulu éprouver comment se fait la propagation de l'électricité dans les corps à qui on la communique; si cette propagation est instantanée du moins sensiblement, ou si elle se fait dans un temps perceptible.
»Pour s'en assurer, après quelques tentatives, dont le résultat ne lui parut pas assez décisif, M. le Monnier disposa deux fils de fer parallèles autour d'un grand clos; chacun d'eux avoit neuf cens cinquante toises, & leurs quatre extrémités se trouvoient à un des angles de ce clos, voisines les unes des autres; un homme prit un bout de chacun de ces fils de chaque main; par ce moyen il se forma une communication de l'un à l'autre, & ils ne firent plus qu'un seul corps de 1900. toises de long, au milieu duquel étoit placé l'homme qui tenoit les deux bouts des fils.
»Par l'arrangement que nous venons de décrire, cet homme, quoique placé au milieu de la longueur totale du corps à électriser, étoit très-voisin des deux autres bouts, & pouvoit juger aisément s'il sentiroit la commotion au moment qu'il verroit éclater l'étincelle: ce fut effectivement ce qui arriva. M. le Monnier ayant pris d'une main le bout d'un des fils de fer, approcha de celui de l'autre fil, le fil-d'archal de la bouteille électrique qu'il tenoit de l'autre main; & dans le même instant que parut l'étincelle, lui & l'homme placés au milieu de la longueur des fils de fer, ressentirent la commotion, sans qu'il fût jamais possible d'appercevoir le plus petit intervalle de tems entre l'étincelle & le coup, quoiqu'il eût été facile de discerner jusqu'à un quart de seconde s'il s'y étoit trouvé.
Le même Physicien, pour acquérir une preuve encore plus complette de ce phénomène, fit quelque tems après une autre expérience un peu différente, dont le succès lui confirma celui de la précédente. Ayant choisi un endroit commode dans une plaine des environs de Paris, il l'entoura d'un fil de fer de quatre mille toises de longueur qui font deux lieuës. Les deux extrémités de ce fil furent disposées à six ou sept pieds de distance l'une de l'autre. Pendant que M. le Monnier tenoit dans sa main l'un des bouts de ce fil de fer, un autre observateur qui portoit la bouteille électrique approcha le fil-d'archal de cette bouteille de l'autre bout du fil de fer. Dans le même instant les deux observateurs ressentirent la commotion dans les bras dont ils tenoient l'un le fil de fer & l'autre la bouteille. La commotion est moins forte dans cette expérience qu'elle ne l'est dans la précédente, parce que sa violence est partagée entre les deux observateurs; chacun n'éprouve qu'environ la moitié de la commotion qu'il ressentiroit, si le cercle de communication de l'un à l'autre étoit achevé; mais le résultat n'en est pas moins sûr pour le but qu'on s'étoit proposé. L'expérience fut répétée, & le même effet s'ensuivit toujours également, sans qu'on pût trouver le moindre instant saisissable entre l'apparition de l'étincelle & la sensation du choc. Ainsi l'électricité parcourut une espace de deux lieuës dans un instant imperceptible. On ne remarqua pas non plus la moindre différence de force entre la commotion qui se fit sentir à l'un des observateurs & celle qui se fit sentir à l'autre, quoiqu'ils ne se communiquassent que par le fil de fer de quatre mille toises de longueur.
Si ces expériences ne prouvent pas que la propagation de l'électricité est instantanée, elles font voir du moins que les écoulemens de la matière électrique se portent avec une rapidité inconcevable, & apparemment égale à celle de la lumière le long des corps non-électriques: elles servent de confirmation à la première découverte de Boyle, que l'air n'y a point de part: & elles ajoutent beaucoup à l'analogie que M. Hales 3 a trouvée entre les effets de l'électricité & ceux du tonnerre. On verra bientôt ce que l'on doit penser de cette analogie.
Il arrive souvent, lorsqu'on électrise la bouteille avec excès, ou qu'on la soutient par le fond étant trop fortement électrisée, qu'elle se décharge d'elle-même dans la main de celui qui la tient, sans qu'il approche son autre main du fil de fer de cette bouteille, ni du premier conducteur. Il sort alors une forte étincelle du fond de la bouteille, & il se fait une puissante commotion. Il est arrivé à plusieurs de recevoir de cette manière un choc si violent qu'ils en ont été renversés, & qu'il leur en est resté dans toutes les parties du corps un tremblement qui a duré trois ou quatre jours. Ils ont aussi ressenti pendant long-tems l'impression que la violence de l'étincelle leur avoit faite au doigt, & en ont porté long-tems temps une marque noire semblable à celle d'une brûlure.
Il arrive encore quelquefois qu'en chargeant la bouteille auprès du globe, elle fait explosion & se casse; celui qui la tient reçoit dans cet instant une violente commotion: après cette explosion la bouteille se trouve percée au côté d'un trou exactement rond ordinairement sans fêlure, dont on est averti par l'écoulement de l'eau qu'elle contenoit. Il est aussi arrivé plus d'une fois que le globe lui-même a fait explosion & s'est brisé en même tems que la bouteille; quelques-uns de ses fragmens ont paru avoir été lancés avec autant de force que des éclats de bombe. Il est plus sûr de ne charger la bouteille qu'auprès du premier conducteur.
Si un homme est si rudement frappé d'un coup d'électricité qu'il puisse même en être renversé, & en ressentir les effets pendant plusieurs jours, doit-on s'étonner que de petits animaux puissent en être tués? Presque tous ceux qui ont répété l'expérience de Leyde, en ont fait l'épreuve avec succès.
La médecine à sçu plusieurs fois tirer parti des choses qui sembloient les plus opposées à son but, & convertir en remèdes salutaires des substances qui avoient de tout tems été reconnuës pour des poisons dangereux; la philosophie à son exemple a essayé de faire servir à l'utilité des hommes ce qui peut leur être nuisible ou qui paroît tout au moins inutile pour la santé: elle a tenté d'appliquer à la guérison des maladies, ce qui peut donner la mort. Quel but plus noble les Sciences peuvent-elles se proposer? l'extrait d'une lettre de M. Jallabert célèbre Professeur de Philosophie à Genève inséré dans le Journal des Sçavans pour le mois de Mai 1748. fait foi du dessein, de l'épreuve & du succès.
»On m'amena, dit M. Jallabert, le 26. Décembre un nommé Nogués paralytique du bras droit depuis près de quinze ans; outre la perte du sentiment & du mouvement, le bras & l'avant-bras étoient extrêmement maigres. Nous exposâmes d'abord, Mr. Guiot Chirurgien & moi à l'épreuve de la commotion, la main paralytique attaché au vase; la violence du coup porta principalement au haut de l'épaule. Je fis ensuite découvrir le bras paralytique, & l'homme étant placé sur de la poix, & vivement électrisé, je vis sortir des étincelles de divers endroits du bras; nous aperçûmes d'abord que les muscles d'où elles partoient, étoient agités de mouvemens convulsifs: bientôt après nous les vîmes mouvoir successivement & en différens sens l'avant-bras, le carpe & les doigts, suivant que nous tirions l'étincelle de tel ou tel muscle.»
»Je me mis à la place du paralytique, & j'observai que les muscles & les parties auxquelles ils aboutissent se mouvoient quand on en tiroit une étincelle, sans qu'il fût en mon pouvoir de l'empêcher, & que suivant que l'on tiroit une étincelle, par exemple, des muscles extenseurs ou fléchisseurs du carpe ou des doigts, ils se baissoient ou s'élevoient en sens opposés. Cette observation me donna quelqu'espérance pour - le paralytique, & après l'avoir souvent exposé aux étincelles électriques & quelquefois à la commotion, je remarquai des changemens en bien, & le 10. Janvier le bras paralytique avoit repris beaucoup d'embonpoint, le malade commençoit à étendre les doigts. Le 24. Janvier les mouvemens de l'avant-bras & du bras se faisoient mieux, il approchoit la main de son chapeau. Le 30. Janvier il avoit tiré son chapeau; l'avant-bras affecté étoit aussi rempli de chair que l'avant bras sain, & le bras augmentoit considérablement; le poignet pouvoit faire les différens mouvemens, lors même que la main étoit chargée d'une bouteille tenant un pinte.» Une lettre de Genève du 28. Février porte que le paralytique tiroit son chapeau sans peine, qu'il manioit de gros marteaux, & qu'il comptoit pouvoir forger en peu de jours.
Il a été soutenu 4 en l'année 1751. dans l'Université de Prague en Bohême, une Thèse de médecine sur l'utilité de l'électricité pour la guérison des maladies. Quoique les expériences & les observations dont cette thèse est remplie, n'ayent pas toutes le mérite de la nouveauté, elles sont trop intéressantes par leur objet & par l'ordre dans lequel elles sont rapportées, pour ne pas trouver place dans cette histoire. Après avoir examiné les effets de l'électricité tant sur les corps fluides, que sur les corps solides en général qui ont été exposés à son action, & après avoir prouvé par des expériences suivies & comparées que l'électricité augmente l'évaporation naturelle de la plupart des uns, & la transpiration insensible des autres: après avoir expliqué comment & pourquoi l'électricité accélère l'écoulement des liqueurs dans les tuyaux capillaires dont elle rend les jets continus & divergens, & qu'elle ne produit pas le même effet dans des tuyaux d'un plus grand diamètre 5: après avoir fait voir par une expérience déjà connuë que la végétation des plantes est avancée par l'électricité: enfin après avoir démontré par le résultat de quantité d'expériences combinées & répétées de différentes manières en différens tems sur des corps animés de différens genres, que l'électricité augmente la transpiration des animaux en favorisant en eux le mouvement des fluides & l'action tonique des solides, l'auteur de cette thèse pour rechercher les maladies auxquelles l'électrisation pourroit servir de remède, prend pour exemple la paralysie dont il examine en détail les différens symptômes & les différens effets. Après avoir cité l'opinion d'un fameux Professeur 6 en médecine de Montpellier, qui prétend que le fluide nerveux n'est autre chose que le fluide électrique. Il rapporte les raisons qui appuyent cette conjecture & adopte son sentiment. Il ne doute même pas que ce fluide qui parcourt les nerfs avec une vîtesse incompréhensible, pour mettre les muscles en mouvement au premier ordre de la volonté, n'ait la plus grande part à l'origine, à la vigueur & à l'entretien de la chaleur naturelle. De là il passe aux diverses méthodes de traiter les paralysies, & n'oublie pas celle d'y appliquer l'électricité. Il en prouve l'efficacité par le traitement circonstancié, par le changement en mieux & par la guérison parfaite de quatre paralytiques, par le soulagement d'un rhumatisme très-douloureux, par la résolution des nodus & le rétablissement des forces d'un gouteux & d'un autre malade privés l'un & l'autre de l'usage de leurs membres. Enfin il termine sa dissertation par les positions suivantes.
Note 5: (retour) Il est vraisemblable que cette différence ne vient que de ce que les écoulemens de la matière électrique ne sont pas aussi abondans que ceux des liqueurs dans de larges tuyaux. Si l'électricité étoit assez forte & assez abondante, elle accéléreroit, diviseroit & rendroit divergens les jets de toute sorte de tuyaux également.I. Electricitas in arte medicâ est adhibenda.
II. Electricitas auget naturalem animalium transpirationem.
III. Hæc acceleratio transpirationis in hominibus fit per vasa capillaria exhalantia, & non per glandulas subcutaneas.
IV. Fluidum nerveum fluidum electricum dici potest.
V. Nervi sensorii à motoriis non sunt distincti.
VI. Hemiplegiæ causa proxima est immeabilitas fluidi nervei per nervos.
VII. Hemiglegia præ reliquis morbis electrisatione curanda.
VIII. Etiam febris intermittens electrisatione debellari potest. &c. &c.
Il a paru dans les nouvelles publiques des années 1753. & 1754. des relations détaillées de diverses guérisons opérées par l'électricité sur des sourds & des aveugles en différentes contrées de l'Europe. Malgré les autorités dont elle étoient revêtuës, quoique quelques-unes de ces guérisons m'ayent été attestées par un jeune médecin Suédois 7 qui avoit apporté à Paris un excellent globe dans l'intention d'y faire des miracles, elles n'ont point assez gagné ma confiance pour me paroître mériter d'avoir place dans cette histoire.
La persuasion où l'on est que la matière électrique pénètre les corps auxquels on la communique, de même que ceux qui la contiennent naturellement, a encore donné occasion d'imaginer des moyens pour en tirer de l'utilité. On a pensé que si elle pénètre les parties du corps humain, auxquelles elle n'est par elle-même capable que de donner de l'ébranlement, elle pourroit servir de véhicule à des remèdes que l'on voudroit faire passer dans l'intérieur de ces parties. De quel avantage ne seroit pas cette propriété, si elle se trouvoit avoir quelque réalité? On trouvera dans la suite de cet ouvrage ce que l'on doit attendre de cette idée.
M. Bose célèbre Professeur de Physique à Wittemberg rapporte une expérience qui a vainement occupé la plupart des Physiciens. Un enfant ou un adulte placé sur un gâteau de résine touche de la main le globe ou la poignée d'une épée actuellement électrisée par sa pointe auprès du globe, il acquiert en peu de tems une si grande quantité de feu électrique que d'abord ses pieds, ensuite ses jambes, ses genoux & enfin tout son corps paroissent dans l'obscurité en être environnés de tous côtés comme d'un nuage lumineux semblable à la gloire dont les peintres entourent le portrait d'un saint. C'est pour cette raison que l'auteur a nommé cette expérience la Béatification. Tous ceux qui l'ont tentée se plaignent de ce que M. Bose n'en a pas donné un détail assez circonstancié. Il avouë aussi lui-même qu'elle lui a souvent manqué. L'on conçoit en effet qu'il faut un tems & des circonstances bien favorables pour pouvoir accumuler sur un homme une assez grande quantité de feu électrique pour l'environner depuis les pieds jusqu'à la tête d'une atmosphère lumineuse & bien visible.
Le même M. Bose avoit avancé dans son quatriéme commentaire sur l'électricité qu'il désespéroit que l'on pût trouver une mesure exacte des forces de l'électricité. L'on a reconnu que sa conjecture étoit hazardée. Quand on n'auroit pas l'ingénieux instrument que MM. d'Arcy & le Roy ont inventé & exécuté pour mesurer la force de l'électricité, auquel ils ont pour cette raison donné le nom d'Électromètre, 8 on trouveroit dans les expériences de M. Franklin de quoi y suppléer. Cet auteur a donné (Lettre V. §. 55. & 56.) la description de deux fortes de rouës électriques qui, quoiqu'elles n'ayent pas été imaginées à cette intention, peuvent être regardées comme d'excellens Électromètres. Il fait servir dans chacune de ces machines la seule vertu attractive de l'électricité de deux manières différentes activement & passivement. Ces deux effets se succèdant alternativement contribuënt également au mouvement circulaire des rouës. Il seroit inutile d'en rapporter ici la construction & le détail que l'on trouvera tome premier, pag. 172-183. Il suffit de dire que ces rouës sont mises en mouvement par la seule force de l'électricité, & qu'elles font chacune sur leur axe plus ou moins de révolutions, à proportion que ces rouës ou les bouteilles sont plus ou moins chargées d'électricité. Ainsi sans être, comme le dit M. Bose audaculus & [Grec: achômerutos], on pourra assurer que tel ou tel degré de force électrique est double, triple, quadruple de tel ou tel autre. Quel privilège lui paroissoit avoir l'électricité, pour être la seule chose physique qui ne fût pas soumise à l'empire du calcul?
Ainsi depuis l'expérience de M. Cuneus vulgairement appellée expérience de Leyde, les connoissances sur l'électricité ont plus fait de progrès qu'elles n'en avoient fait auparavant. Les Physiciens ont travaillé & travaillent sans relâche à ajouter aux découvertes qui ont été faites sur ce sujet. Les uns, sans songer que la matière n'est point encore assez préparée, & qu'il n'y a pas encore assez de faits connus, font tous leurs efforts pour pénétrer les mystères de l'électricité & pour en expliquer la nature; d'autres s'appliquent à lui chercher de nouvelles propriétés, & pour cela s'en tiennent modestement aux expériences, d'autres enfin en proposant leurs conjectures, font voir des rapports évidens entre les phénomènes les plus communs des météores & ceux de l'électricité.
M. Franklin, sans prétendre à la première de ces classes, occupe une place de distinction dans les deux dernières avec les Physiciens qui se sont le plus avancés dans cette carrière; mais il les laisse bien loin derrière lui. Une seule des découvertes qu'il a faites dans cette nouvelle terre, suffira pour donner une idée de la sagesse, de la grandeur & de la finesse de ses vûes. Étant venu à bout de fondre, & même de vitrifier les métaux d'un coup d'électricité, il compare ce phénomène avec un effet tout semblable du tonnerre; c'est celui de fondre l'argent dans une bourse & une lame d'épée dans le fourreau. Conduit par cette observation & par une infinité d'autres rapprochées avec sagacité, il découvre une analogie surprenante entre l'électricité & la foudre: il fait voir par des raisons solides que le feu électrique & le feu du ciel sont le même élément bien différent du feu commun, quoiqu'il puisse le produire. Celui-ci ennemi de l'eau ne subsiste que dans l'air libre, & n'agit que par sa chaleur; celui-là au contraire s'unit à l'eau, se maintient dans le vuide, & opère sans chaleur. Il y a beaucoup d'apparence que c'est le véritable feu élémentaire, dont le feu commun n'est que l'image imparfaite.
Convaincu lui-même par la force de ses preuves, sans pourtant en être ébloüi, notre auteur développe en conséquence la nature & la formation du plus redoutable des météores. Se rappellant ensuite le pouvoir admirable qu'ont les pointes de tirer imperceptiblement le feu électrique des corps où il se trouve dans un mouvement actuel, & profitant adroitement de cet avantage, il va jusqu'à indiquer des moyens par lesquels on pourroit dissiper le tonnerre, & par-là nous garantir de ses funestes effets.
En suivant les principes de M. Franklin que je me suis rendus propres, en examinant ses observations que j'ai répétées & approfondies, en déférant à ses conjectures auxquelles j'ai ajouté les miennes, en joignant à ses probabilités celles que j'ai recueillies d'ailleurs, en un mot en entrant dans toutes ses vuës, je me suis persuadé que la matière du tonnerre devoit être la même que celle de l'électricité. Le feu S. Elme & la lumière que l'on aperçoit sur des pointes métalliques à l'approche des orages, celle entr'autres dont il est dit dans les Commentaires de César, eâdem nocte quintæ legionis pilorum cacumina suâ sponte arserunt, m'ont semblé être la même chose que l'aigrette que montre une pointe dans les expériences électriques. Enfin mes réflexions m'avoient tellement affermi dans cette opinion, que quand même le succès n'eût pas répondu à mon attente, je n'aurois pû y renoncer. Il s'agissoit d'en avoir une confirmation tirée de l'expérience; je ne fus pas long-tems à l'attendre.
Après avoir fait dresser en Avril 1752. l'appareil dont on trouvera la description dans le second tome de cet ouvrage pag. 67. & suiv. Il arriva le 10. Mai suivant un orage qui auroit pleinement satisfait à tous mes désirs, si j'avois pû être témoin occulaire des observations qui s'y firent en mon absence. Ceux à qui j'avois laissé le soin de mon expérience avec les instructions nécessaires, virent l'électricité naturelle & furent les premiers à recueillir le feu du ciel. La nouvelle m'en fut apportée dès le soir même, & j'en rendis compte deux jours après à l'Académie Royale des Sciences. La plupart des Membres de cette célèbre Compagnie eurent la politesse de me faire compliment sur mon mémoire & de m'assurer que jamais il n'en avoit paru aucun qui eût été écouté avec autant d'attention ni aucune expérience dont le rapport eût donné autant de satisfaction; elle prit dès-lors le nom du lieu de sa naissance, & un Physicien des plus renommés vaincu par des observations générales ne put s'empêcher de publier quelque tems après que l'expérience de Marly-la-Ville, de même que celle de Leyde, feroit époque dans l'histoire de l'électricité.
Le bruit de cette découverte se répandit bientôt dans toute l'Europe & même dans toute la terre. L'expérience fut répétée avec le même succès dans tous endroits où elle fut tentée. On imagina des moyens fort ingénieux pour dresser en l'air des pointes métalliques, & pour les faire communiquer dans les appartemens sans rien perdre de la matière dont elles se chargeroient; la petite sonnerie qu'on y ajoûta, est l'expédient le plus simple & le plus sûr pour être averti en tous tems de la présence de cette matière & de l'approche des nuages qui en occasionnent l'apparition. Le carillon procure encore un autre avantage plus important dont nous allons parler.
Les précautions que j'avois prises pour me garantir de tout accident fâcheux dans la première tentative de cet expérience, ne touchèrent pas sans doute également tous ceux qui entreprirent de la répéter. Le malheur d'un célèbre Professeur de Physique à Petersbourg montra en même tems combien il est dangereux de les négliger, & combien en général nous devons être redevables à ceux qui ont cherché à étendre nos connoissances par les premiers essais des choses.
Les relations de la mort de M. Richman qui furent mises dans les nouvelles publiques de 1753. nous ont bien appris qu'il avoit été tué d'un coup d'électricité naturelle; mais on ignore si le tonnerre est réellement tombé sur son appareil électrique, ou s'il n'a été frappé que par l'explosion de la matière dont sa barre de fer trop bien isolée se trouva surchargée. L'exemple de ce qui est arrivé à plusieurs autres en pareilles circonstances, me fait pancher vers ce dernier sentiment. Dans l'un & l'autre cas; sans cesser de plaindre son malheur, je ne puis en attribuer la cause qu'à son défaut d'attention & de précaution. S'il y eût eu une décharge métallique à un ou deux pouces de l'appareil, elle en auroit reçu la matière électrique surabondante, & n'y en auroit laissé qu'autant qu'il en falloit pour faire les expériences nécessaires, & jamais assez pour frapper à une distance de quatre pouces, qui est celle où l'on dit que M. Richman a reçu le coup fatal. Le carillon dont nous avons parlé ci-devant, eût été une décharge plus que suffisante pour lui sauver la vie.
Dans le tems que la Physique récompensoit si mal les soins d'un Sçavant empressé à pénétrer ses secrets, je continuois à faire mes observations tant sur l'électricité naturelle que sur l'artificielle. Je n'y étois pas plus encouragé par mes premiers succès & par le commerce de Mr. Franklin que par le vif intérêt qu'y prenoient plusieurs amis du premier ordre qui travailloient souvent avec moi; l'un de ceux-ci m'avoit prié de lui aider à former un cabinet électrique complet; je n'avois rien épargné pour lui donner satisfaction. Le premier fruit qu'il en retira, fut le succès de mon expérience du tonnerre artificiel sur une glace de 1200. pouces quarrés, dont il fut enchanté.
Cette glace est des plus parfaites & des plus minces, bien polie, en quarré long, étamée des deux côtés & affermie sur un fort cadre de bois. Sur le teint de sa surface antérieure, j'ai tracé tout autour une bordure d'environ trois pouces de largeur, & avec un cizeau de cuivre j'en ai enlevé l'étain, en observant d'arrondir les angles & de ne point laisser de bavures en pointes dans tout le circuit. En voilà toute la préparation.
L'expérience consiste à électriser cette glace ainsi préparée, en laissant tomber une petite chaîne du premier conducteur sur le milieu de sa surface antérieure. Si le tems est favorable & que l'on soit dans l'obscurité, après douze ou quinze tours de rouë on apperçoit sur les bords de l'étain quelques étincelles, qui augmentant peu à peu en nombre & en force, représentent assez bien un ciel tout enflammé, tel que celui qui précède les grands orages. En continuant & même en forçant l'électrisation, tout cela se termine par une violente explosion qui fait avec le plus brillant éclair un bruit aussi éclatant que celui du plus fort coup de fouet.
Après cette explosion, l'on trouve à l'endroit où elle s'est faite sur la glace une trace blanchâtre plus ou moins apparente assez ordinairement en zic-zac, qui traverse la bordure découverte depuis le bord de l'étain jusqu'au cadre sous lequel elle va se perdre. En passant le doigt ou l'ongle dessus on sent que la glace est dépolie & raboteuse en cet endroit, ce qui prouve évidemment que la matière électrique pénètre le verre sans le traverser.
Si, immédiatement après l'explosion on approchoit le nez de l'endroit où elle s'est faite, l'on y sentiroit une odeur de soufre très-frappante. Cette odeur est si volatile qu'elle s'exhale en peu de tems, & il ne faut que deux ou trois explosions pour en remplir toute la chambre, quelque grande qu'elle puisse être. Il n'y a personne qui ne reconnoisse à tous ces traits le plus redoutable des météores; c'est la raison pour laquelle on a donné à cette expérience le nom de tonnerre artificiel. Il est très-possible d'en tirer des effets aussi surprenans que ceux du tonnerre naturel.
C'est avec cette glace que j'ai percé d'un coup d'électricité jusqu'à cent soixante feüilles de papier fin; elle m'a aussi servi à enflammer la poudre à canon froide; mais je trouve plus commode l'usage des grands vases de verre bien armés.
Dans la première idée que M. Franklin s'étoit formée de la nature du tonnerre, il avoit supposé que les nuages orageux étoient électrisés positivement, & c'est sur cette hypothèse qu'il avoit établi sa première Théorie; dès qu'il a reconnu que l'électricité des nuages est négative bien plus souvent qu'elle n'est positive, il n'a pas hésité à changer d'opinion; loin d'être plus attaché à sa nouvelle conjecture qu'il ne l'avoit été à la première, il la donne pour ce qu'elle est & propose lui-même les objections qui peuvent l'embarrasser.
C'est avec la même franchise qu'il se rend aux découvertes d'autrui. On lui apprend que l'électricité du soufre paroît d'une nature différente de celle du verre; il se met sur le champ à répéter les expériences qui peuvent constater le fait, & convaincu par lui-même de la vérité, il en laisse toute la gloire à son émule.
Avec le secours des grands vases multipliés, M. Franklin est parvenu à aimanter des aiguilles, à en changer les pôles à volonté, & à démontrer par ces merveilles que la vertu magnétique n'est qu'un effet d'électricité. Peut-être la pierre d'aimant elle-même n'est-elle devenuë aimant que par un pareil effet de l'électricité naturelle. Quoi qu'il en soit, le magnétisme a été communiqué par les expériences faites à Paris, de même qu'il l'avoit été par celles de Philadelphie.
On s'attend bien que ces dernières découvertes feront reprendre la plume aux critiques de M. Franklin. Pourquoi auroient-elles plus de privilége que toutes les autres du même auteur? Dès que son premier ouvrage parut, il fut vivement attaqué; & comme l'on trouvoit peu de prise sur le fond, on n'épargna rien pour tourner en ridicule ceux qui en étoient les partisans. Cette guerre littéraire n'est point encore éteinte, & vraisemblablement ne finira pas sitôt, puisque le plus ardent de nos adversaires abandonnant sa première attaque est forcé de revenir sur ses pas, de changer de batterie & de recommencer sur nouveaux frais. Il n'en est encore qu'à l'examen des étincelles électriques. S'il suit l'ordre des expériences, quand il arrivera à ces dernières, elles ne seront plus nouvelles que pour lui.
PRÉFACE
DE
L'ÉDITEUR ANGLOIS.
I
l est à propos d'avertir le Lecteur que les observations & les expériences suivantes n'ont pas été faites dans le dessein d'être données au public. Elles avoient été communiquées en divers tems à quelques amis particuliers, & n'étoient destinées qu'à leur servir d'amusement, la plupart même se trouvent dans des lettres écrites sur différens sujets.Mais ayant été luës à quelques personnes fort versées dans les recherches électriques, toutes ont jugé qu'elles contenoient tant de particuliarités curieuses & intéressantes, relativement à la matière en question, que ce seroit faire une espèce d'injustice au public, de les renfermer dans les bornes d'un petit cercle d'amis.
C'est pourquoi l'Éditeur avoit pris sur lui de faire imprimer ces extraits de lettres & autres pièces détachées dans l'état qu'elles lui étoient tombées entre les mains, sans avoir demandé à l'ingénieux auteur la permission d'en user de la sorte. Il avoit fait cette démarche avec d'autant moins de scrupule, qu'il appréhendoit que les engagemens de l'auteur dans d'autres affaires plus importantes ne lui laissassent pas le loisir de donner au public ses réflexions, & ses expériences sur l'électricité retouchées avec ce soin & cette précision dont il n'est pas moins jaloux que capable, comme il est facile de s'en convaincre par le traité que nous avons sous les yeux.
On ne l'instruisit de la liberté qu'on avoit prise, que lorsque les premières feüilles étoient sous la presse, & il n'eut que le tems d'envoyer quelques nouvelles remarques avec un petit nombre de corrections & d'augmentations, qui ont été placées à la fin de l'ouvrage, & que l'on peut consulter dans l'occasion.
Ces expériences sont presque toutes en propre à notre auteur; il les a conduites avec jugement, & les conséquences qu'il en déduit sont évidentes, & décisives, quoique proposées quelquefois sous les termes modestes d'hypothèses, & de conjectures.
En effet la scène qu'il ouvre à nos regards, nous surprend agréablement, tandis qu'il nous mène par un enchaînement de faits, & de réfléxions judicieuses à une cause probable des phénomènes les plus terribles & qui ont été expliqués jusqu'ici avec le moins de vraisemblance.
Il nous découvre une matière invisible, subtile, répanduë dans toute la nature en différentes proportions, qui avoit échappé à nos observations, & qui est incapable de nuire lorsque tous les corps auxquels elle est adhérente, en sont également chargés. Il prouve néanmoins que si par quelque moyen que ce soit, il s'en fait une distribution inégale, s'il y a accumulation sur une partie de l'espace, & qu'il y ait sur l'autre une moindre proportion, un vuide, un épuisement, à l'approche immédiate d'un corps capable de conduire la partie accumulée à l'espace altéré, cette matière devient peut-être l'agent le plus formidable, & le plus irrésistible qui soit dans l'univers. Les animaux en sont subitement frappés à mort: les corps impénétrables à la plus grande force que nous connoissions, en sont criblés, & les métaux fondus en un instant.
Les effets analogues de la foudre & de l'électricité ont conduit notre auteur à avancer quelques conjectures fort vraisemblables sur la cause du tonnerre, & à proposer en même tems quelques expériences raisonnées pour nous préserver de ses effets pernicieux & garantir les choses qui sont le plus exposées à en ressentir les atteintes: circonstance assurément très-importante pour le public & digne par conséquent de la plus sérieuse attention.
Il étoit passé en mode depuis quelque tems d'attribuer à l'électricité toutes les grandes & extraordinaires opérations de la nature; telles que la foudre & les tremblemens de terre; ce n'est pas (comme on pourroit se l'imaginer par la manière dont on raisonne sur ces événemens) que les auteurs de ces systèmes eussent découvert quelque connéxion entre la cause & l'effet, ou donné la raison de leur dépendance réciproque, mais seulement (à ce qu'il paroit) parce qu'ils ne connoissoient aucun autre agent dont la liaison avec les effets ne pût être positivement démontrée impossible.
Mais le lecteur sera pleinement satisfait sur ces circonstances, & sur plusieurs autres non moins intéressantes, par la lecture des lettres qui suivent, & auxquelles l'Éditeur n'hésite point de le renvoyer avec confiance.
APPROBATION.
J
'ai lû par l'ordre de Monseigneur le Chancelier, un Ouvrage intitulé: Expériences & Observations sur l'Électricité faites à Philadelphie en Amérique par M. Benjamin Franklin, &c. traduites de l'Anglois par M. D'Alibard; deuxiéme édition, &c. & je n'y ai rien trouvé qui m'ait paru devoir en empêcher l'impression. À Paris ce 30.Mai 1755.PICQUET.
PRIVILÉGE DU ROI.
Louis, par la grace de Dieu, Roi de France & de Navarre: À nos amés & féaux Conseillers les gens tenans nos Cours de Parlement, Maîtres des Requêtes ordinaires de notre Hôtel, Grand Conseil, Prevôt de Paris, Baillifs, Sénéchaux, leurs Lieutenans Civils & autres nos Justiciers qu'il appartiendra, SALUT. Notre amé le Sieur D'Alibard, Nous a fait exposer qu'il desireroit faire imprimer & donner au Public un Livre qui a pour titre Expériences & Observations sur l'Électricité faites à Philadelphie en Amérique par M. Benjamin Franklin de Philadelphie & communiquées dans plusieurs Lettres à M. Collinson à Londres, s'il nous plaisoit lui accorder nos Lettres de Privilége pour ce nécessaires. À CES CAUSES, voulant favorablement traiter l'Exposant; Nous lui avons permis & permettons par ces Présentes, de faire imprimer ledit Livre en un ou plusieurs volumes, & autant de fois que bon lui semblera, & de le vendre, faire vendre & débiter partout notre Royaume pendant le tems de six années consécutives, à compter du jour de la date des Présentes: Faisons défenses à toutes personnes de quelque qualité & condition qu'elles soient, d'en introduire d'impression étrangere dans aucun lieu de notre obéissance: Comme aussi à tous Libraires & Imprimeurs d'imprimer ou faire imprimer, vendre, faire vendre, débiter, ni contrefaire ledit Livre, ni d'en faire aucun extrait sous quelque prétexte que ce soit d'augmentation, correction, changement ou autres, sans la permission expresse & par écrit dudit Exposant, ou de ceux qui auront droit de lui, à peine de confiscation des exemplaires contrefaits, de trois mille livres d'amende contre chacun des contrevenans, dont un tiers à Nous, un tiers à l'Hôtel-Dieu de Paris, & l'autre tiers audit Exposant, ou à celui qui aura droit de lui, & de tous dépens, dommages & interêts; à la charge que ces Présentes seront enregistrées tout au long sur le registre de la Communauté des Libraires & Imprimeurs de Paris dans trois mois de la date d'icelles; que l'impression dudit Livre sera faite dans notre Royaume, & non ailleurs, en bon papier & beaux caractéres, conformément à la feüille imprimée, attachée pour modéle sous le contre-scel des présentes; que l'impétrant se conformera en tout aux réglemens de la Librairie, & notamment à celui du 10. Avril 1725; qu'avant de l'exposer en vente, l'imprimé qui aura servi de copie à l'impression dudit Livre, sera remis dans le même état où l'approbation y aura été donnée, ès mains de notre très-cher & féal Chevalier Chancelier de France le Sr. de Lamoignon, & qu'il en sera ensuite remis deux exemplaires dans notre bibliothéque publique, un dans celle de notre Château du Louvre, un dans celle de notredit très-cher & féal Chevalier Chancelier de France le sieur de Lamoignon, & un dans celle de notre très-cher & féal Chevalier Garde des Sceaux de France le sieur de Machault Commandeur de nos Ordres, le tout à peine de nullité des présentes; du contenu desquelles, vous mandons & enjoignons de faire jouir ledit Exposant & ses ayans causes pleinement & paisiblement, sans souffrir qu'il leur soit fait aucun trouble ou empêchement. Voulons que la copie des présentes qui sera imprimée tout au long ou au commencement ou à la fin dudit Livre, soit tenuë pour dûement signifiée; & qu'aux copies collationnées par l'un de nos amés & féaux Conseillers & Secrétaires, foi soit ajoutée comme à l'original: Commandons au premier notre Huissier ou Sergent sur ce requis, de faire pour l'exécution d'icelles, tous actes requis & nécessaires, sans demander autre permission, & nonobstant clameur de Haro, charte Normande & lettres à ce contraires. Car tel est notre plaisir. Donné à Versailles le huitiéme jour du mois d'Octobre, l'an de grace mil sept cens cinquante-un, & de notre regne le trente-septiéme. Par le Roi en son Conseil. Signé SAISON.
Registré sur le Registre douze de la Chambre Royale des Libraires & Imprimeurs de Paris, Nº. 688. fol. 547. conformément au Réglement de 1723. qui fait défense, art. 4. à toutes personnes de quelque qualité qu'elles soient, autres que les Libraires & Imprimeurs, de vendre, débiter & faire afficher aucuns Livres, pour en vendre en leurs noms, soit qu'ils s'en disent les Auteurs ou autrement, & à la charge de fournir à la susdite Chambre, huit exemplaires prescrits par l'article 08. du même Réglement. À Paris, ce 24. Décembre 1751. LE GRAS, Syndic.
LETTRES
SUR L'ÉLECTRICITÉ
DE
M. BENJ. FRANKLIN
de Philadelphie en Amérique,
À
M. P. COLLINSON
de la Société Royale de Londres.
LETTRE I.
29, Juillet 1750.
M
ONSIEUR,Comme vous nous avez engagés dans les Expériences électriques, en envoyant à notre Société Littéraire un Tube avec les instructions nécessaires pour s'en servir; & comme notre respectable Fondateur nous a mis en état de porter ces Expériences à une plus grande perfection par le magnifique présent qu'il nous a fait d'un Laboratoire électrique complet, il est convenable que vous soyez l'un & l'autre informés de tems en tems des progrès que nous faisons à cet égard. Ce fut dans cette intention que j'écrivis, & que je vous envoyais mes premières réfléxions sur ce sujet, desirant, puisque je n'ai point l'honneur d'être en correspondance directe avec ce généreux Bienfaiteur de notre Société littéraire, qu'elles pûssent lui être communiquées par votre entremise. C'est dans cette même vûë que j'écris encore, & que je vous envoye ces nouvelles observations. Si vous n'y trouvez rien d'intéressant (ce qui est très-possible, attendu la multitude de sçavans en Europe qui sont continuellement occupés aux mêmes recherches) elles vous prouveront du moins que nous n'avons pas négligé les instrumens qui nous ont été mis entre les mains, & que, s'ils ne nous ont pas servi à faire des découvertes intéressantes, quelle qu'en puisse être la cause, ce n'est pas manque de zêle ni d'application.
Je suis, &c. B. FRANKLIN.
OPINIONS
ET
CONJECTURES
Sur les propriétés & sur les effets de la matière électrique qui résultent des Expériences & observations faites à Philadelphie. 1749.
§. 1. La matière électrique est composée de particules extrèmement subtiles, puisqu'elle peut traverser la matière commune, même les métaux les plus denses, avec tant de facilité & de liberté qu'elle n'éprouve aucune résistance sensible.
2. Si quelqu'un doutoit que la matière électrique passât à travers la substance des corps, mais seulement sur & le long de leur surface, l'expérience de Leyde faite avec un grand vase de verre électrisé, dont le coup seroit tiré à travers son propre corps suffiroit probablement pour le convaincre.
3. La matière électrique diffère de la matière commune en ce que les parties de celle-ci s'attirent mutuellement, & que les parties de la première se repoussent mutuellement; de-là vient la divergence apparante dans un courant d'écoulemens électriques.
4. Mais quoique les particules de matière électrique se repoussent l'une l'autre, elles sont fortement attirées par toute autre matière 9: ceci doit s'entendre de celle qui en est susceptible.
5. De ces trois choses, sçavoir l'extrême subtilité de la matière électrique, la mutuelle répulsion de ses parties, & la forte attraction entr'elles & une autre matière, il en résulte cet effet, que quand une quantité de matière électrique est appliquée à une masse de matière commune d'une grosseur & d'une longueur sensibles, qui n'a pas déjà acquis sa quantité, elle se répand aussitôt également dans la totalité.
6. Ainsi la matière commune est une espèce d'éponge pour le fluide électrique; une éponge ne recevroit pas l'eau, si les parties de l'eau n'étoient plus petites que les pores de l'éponge: elle ne la recevroit que bien lentement, s'il n'y avoit pas une attraction mutuelle entre ses parties & celles de l'éponge: celle-ci s'en imbiberoit plus promptement, si l'attraction réciproque entre les parties de l'eau n'y mettoit pas un obstacle, puisqu'il doit y avoir quelque force employée pour les séparer: enfin l'imbibition seroit très-rapide, si au lieu d'attraction il y avoit entre les parties de l'eau une répulsion mutuelle qui concourût avec l'attraction de l'éponge. C'est précisément là le cas où se trouvent la matière électrique & la matière commune.
7. Mais dans la matière commune il y a (généralement parlant) autant de matière électrique qu'elle peut en contenir dans sa substance. Si l'on en ajoûte davantage, le surplus reste sur la surface, & forme ce que nous appellons une Atmosphère électrique, & l'on dit alors que le corps est électrisé.
8. On suppose que toute sorte de matière commune n'attire pas ni ne retient pas la matière électrique avec une égale force & une égale activité pour les raisons que nous donnerons dans la suite, & que les corps appellés originairement électriques, comme le verre, &c. l'attirent & la retiennent plus fortement, & en contiennent la plus grande quantité.
9. Nous sçavons que le fluide électrique est dans la matière commune, parce que nous pouvons le pomper & l'en faire sortir par le moyen du globe ou du tube: nous sçavons que la matière commune en a à peu près autant qu'elle en peut contenir, parce que, quand nous en ajoûtons un peu plus à une portion quelconque, cette quantité ajoûtée n'y entre point, mais forme une atmosphère électrique: & nous sçavons que la matière commune n'en a pas (généralement parlant) plus qu'elle n'en peut contenir; autrement toutes ses parties détachées se repousseroient l'une l'autre, comme elles font constamment, lorsqu'elles ont des atmosphères électriques.
10. Nous ne sommes pas encore instruits des usages avantageux attachés à ce fluide électrique dans la création, quoique nous ne puissions douter qu'il n'y en ait, & même de très-considérables; mais nous pouvons apercevoir quelques pernicieuses conséquences, qui résulteroient d'une plus grande proportion de ce fluide; car si ce globe où nous vivons, en avoit autant à proportion que nous en pouvons donner à un globe de fer, de bois, ou autre chose semblable, les particules de poussière, ou d'autre matière légère, qui en sont détachées, non-seulement se repousseroient l'une l'autre par la vertu de leurs atmosphères électriques séparées, mais encore seroient repoussées de la terre & seroient difficilement amenées à s'y réunir. Dès-là notre air seroit continuellement & de plus en plus embarrassé de matières étrangéres, & cesseroit d'être propre pour la respiration. Cette réfléxion nous présente une nouvelle occasion d'adorer cette souveraine Sagesse qui a fait toutes choses avec poids & mesure.
11. Si l'on suppose une portion de matière commune entièrement dépourvûë de matière électrique, & que l'on en approche une simple particule de cette dernière, elle sera attirée, entrera dans le corps, & prendra place dans le centre, ou à l'endroit dans lequel l'attraction est égale de toutes parts; s'il y entre un plus grand nombre de particules électriques, elles prennent leur place dans l'endroit où la balance est égale entre l'attraction de la matière commune & leur propre répulsion mutuelle. On suppose que ces particules forment des triangles dont les côtés se raccourcissent à proportion que leur nombre augmente, jusqu'à ce que la matière commune en ait tant attiré que tout son pouvoir de comprimer les triangles par l'attraction, soit égal à tout leur pouvoir de s'étendre elles-mêmes par la répulsion, & alors cette portion de matière n'en recevra plus.
12. Lorsqu'une partie de cette quantité naturelle de fluide électrique est chassée d'une portion de matière commune, on suppose que les triangles formés par le reste s'élargissent par la répulsion mutuelle des parties jusqu'à ce qu'ils occupent cette portion en entier.
13. Lorsque la quantité de fluide électrique qui a été enlevée à une portion de matière commune, lui est renduë, elle y entre, les triangles dilatés étant comprimés de nouveau, jusqu'à ce qu'il y ait place pour la totalité.
14. Pour expliquer ceci, prenez deux pommes ou deux boules de bois, ou d'autre matière, chacune ayant sa quantité naturelle de fluide électrique; suspendez-les au plat-fond par des fils de soye: appliquez le fil d'archal d'une bouteille bien chargée que vous tiendrez à la main, à l'une de ces boules A. (Fig. 1.) & elle recevra du fil d'archal une quantité de fluide électrique, mais elle ne s'en imbibera point, en étant déjà pleine. C'est pourquoi le fluide volera autour de sa surface, & y formera une atmosphère électrique. Amenez A en contact avec B, & elle lui communiquera la moitié du fluide électrique qu'elle a reçû; de sorte que toutes deux auront une atmosphère électrique, & par conséquent se repousseront l'une l'autre: supprimez ces atmosphères en touchant les boules, & laissez-les dans leur état naturel, alors ayant attaché un bâton de cire d'Espagne au milieu de la bouteille pour lui servir de manche, appliquez-en le fil d'archal à A, & qu'en même-tems les parois de cette bouteille touchent B; de cette sorte une quantité de fluide électrique sera chassée de B, & poussée sur A, ainsi A aura un excès de ce fluide électrique qui forme une atmosphère autour de lui, & B sera privé éxactement de cette même quantité: maintenant ramenez les boules en contact, & l'atmosphère électrique ne sera pas divisée entre A & B dans deux plus petites atmosphères comme ci-devant, car B absorbera toute l'atmosphère de A, & les deux boules se retrouveront dans leur état naturel.
15. La forme de l'atmosphère électrique est celle du corps qu'elle environne. Cette forme peut être renduë visible dans un air calme, en excitant une fumée de résine séche, que l'on versera dans une cuillier à caffé sous le corps électrisé; elle sera attirée & s'étendra d'elle-même également sur tous les côtés, couvrant & cachant le corps. Elle prend cette forme, parce qu'elle est attirée de tous les côtés de la surface du corps, quoiqu'elle ne puisse entrer dans sa substance qui est déjà remplie; sans cette attraction, elle ne demeureroit pas autour du corps, mais elle se dissiperoit en l'air.
16. L'atmosphère des particules électriques qui environnent une sphère électrisée, n'est pas plus disposée à l'abandonner, ni plus aisément tirée d'un côté de la sphère que de l'autre, parce qu'elle est également attirée de toutes parts. Mais ce cas n'est pas le même pour les corps d'une autre figure. Dans un cube elle est plus facilement tirée des angles que des surfaces planes, & ainsi des angles d'un corps de toute autre figure, & toujours plus facilement de l'angle le plus aigu. Si donc un corps figuré comme A B C D E dans la Fig. 2. est électrisé, ou à une atmosphère qui lui soit communiquée; & si nous considérons chaque côté comme une base sur laquelle les particules électriques reposent, & par laquelle elles sont attirées, on peut voir en imaginant une ligne de A en F, & une autre de F en G, que la portion d'atmosphère enfermée dans F A E G, a la ligne A E pour base. De même la portion d'atmosphère enfermée dans H A B I, a la ligne A B pour base, & pareillement la portion enfermée dans K B C L, a B C pour appui, & de même sur l'autre côté de la figure. Maintenant si vous tirez cette atmosphère avec quelque corps poli & émoussé, & que vous l'approchiez du milieu du côté A B, il faut venir fort près avant que la force de votre attracteur excède la force ou le pouvoir, avec lequel ce côté maintient son atmosphère: mais il y a une petite portion entre I B K, qui a moins de surface pour s'y appuyer & en être attirée que les portions voisines, tandis qu'il y a d'ailleurs une répulsion mutuelle entre ses particules & les particules de ces portions; vous pouvez donc venir à bout de la tirer avec plus de facilité, & à une plus grande distance. Entre F A H, il y a une plus grande portion qui a encore une moindre surface pour s'y appuyer & pour en être attirée; c'est pourquoi vous pouvez toujours l'enlever plus facilement. Mais la plus grande facilité se rencontre entre L C M, où la quantité est la plus abondante, & où la surface pour l'attirer & la retenir est la plus petite. Lorsque vous avez enlevé une de ces portions angulaires du fluide, une autre prend sa place, par un effet de la fluidité naturelle & de la répulsion mutuelle dont nous avons parlé ci devant; & ainsi l'atmosphère continuë de couler vers cet angle comme un courant, jusqu'à ce qu'il n'en reste plus. Les extrémités de ces portions d'atmosphère sur ces parties angulaires sont pareillement à une plus grande distance du corps électrisé, comme on le peut voir, en jettant les yeux sur la figure. La pointe de l'atmosphère de l'angle C étant beaucoup plus loin de C qu'aucune partie de l'atmosphère sur les lignes C B, ou B A; & outre la distance qui résulte de la nature de la figure, là où l'attraction est moindre, les particules doivent naturellement s'étendre à une plus grande distance par leur mutuelle répulsion.
Sur ces principes fondamentaux nous supposons que les corps électrisés déchargent leur atmosphère sur les corps non électrisés avec plus de facilité & à une plus grande distance de leurs angles & de leurs pointes que de leurs côtés unis. Les pointes la déchargent aussi dans l'air, lorsque le corps a une trop grande atmosphère électrique, sans qu'il soit besoin d'approcher quelque corps non-électrique, pour recevoir ce qui est chassé; car l'air, quoiqu'originairement électrique, a toujours plus ou moins d'eau, ou d'autres matières non-électriques mêlées avec lui, lesquelles attirent & reçoivent ce qui est ainsi déchargé.
17. Mais les pointes ont la propriété de tirer, aussi bien que de pousser le fluide électrique à de plus grandes distances que ne le peuvent faire les corps émoussés; c'est-à-dire, que comme la partie pointuë d'un corps électrisé déchargera l'atmosphère de ce corps, ou la communiquera plus loin à un autre corps, de même la pointe d'un corps non électrisé tirera l'atmosphère électrique d'un corps électrisé de beaucoup-plus loin qu'une partie plus émoussée du même corps non-électrisé ne le pourroit faire. Ainsi une épingle tenuë par la tête, & présentée par la pointe à un corps électrisé, tirera son atmosphère à un pied de distance; mais si la tête étoit présentée au lieu de la pointe, le même effet n'en résulteroit pas. Pour concevoir ceci, nous pouvons considérer que, si une personne debout sur le plancher, tiroit l'atmosphère électrique d'un corps électrisé, une pince de fer & une aiguille à tricoter émoussée tenuës alternativement dans la main, & présentées à cette intention ne l'attireroient pas avec des forces différentes, à proportion de leurs différentes masses. Car l'homme, & ce qu'il tient dans la main, soit grand, soit petit, sont unis avec la masse commune de la matière non-électrisée; & la force avec laquelle il tire, est la même dans les deux cas, puisqu'elle consiste dans la différente proportion d'électricité dans le corps électrisé & dans cette masse commune. Mais la force avec laquelle le corps électrisé retient son atmosphère en l'attirant, est proportionnée à la surface sur laquelle les particules sont placées. Par éxemple, quatre pieds quarrés de cette surface retiennent leur atmosphère avec quatre fois autant de force qu'un pied quarré retient son atmosphère; & comme en arrachant les crins de la queuë d'un cheval, un degré de force insuffisant pour en arracher une poignée à la fois, suffiroit pour la dépouiller crin à crin; de même un corps émoussé que l'on présente, ne sauroit tirer plusieurs parties à la fois; mais un corps pointu, sans une plus grande force, les enléve aisément partie par partie.
18. Ces explications du pouvoir & de l'opération des pointes, lorsqu'elles se présentèrent à moi pour la première fois, & tandis qu'elles rouloient dans mon esprit, me parurent satisfaire à toutes les difficultés; cependant depuis que je les ai mises par écrit & rapellées à un examen plus sévère & plus réfléchi, j'avouë de bonne foi qu'il me reste quelque doute à cet égard. Mais n'ayant rien de mieux pour le présent à vous offrir à leur place, je ne les rejette pas absolument; car une mauvaise solution que l'on lit, & dont on découvre les défauts, donne souvent occasion à un Lecteur ingénieux d'en trouver une plus parfaite.
19. Le plus important pour nous n'est pas de sçavoir de quelle manière la nature exécute ses loix; il nous suffit de connoître les loix elles-mêmes. C'est un avantage réel de sçavoir qu'une porcelaine abandonnée en l'air sans être soutenuë, tombera & se brisera immanquablement; mais de sçavoir comment elle tombe & pourquoi elle se brise c'est une matière de pure spéculation. Ces connoissances sont agréables à la vérité, mais sans elles nous pouvons garantir notre porcelaine.
20. Ainsi dans le cas présent il pouroit être de quelque usage pour le genre humain de connoître le pouvoir des pointes, quoique nous ne fussions jamais en état d'en donner une explication précise. Les expériences suivantes montrent ce pouvoir. J'ai un premier conducteur fort large, composé de plusieurs feüilles minces de carton, ajusté en forme de tube d'environ dix pieds de longueur & d'un pied de diamètre. Il est couvert de papier d'Hollande relevé en bosse & presque tout doré.
Cette large surface métallique soutient une atmosphère électrique beaucoup plus grande que n'en soutiendroit une verge de fer cinquante fois plus pesante. Il est suspendu par des fils de soye; & lorsqu'il est chargé, il frappe à environ deux pouces de distance, un coup assez fort pour causer de la douleur aux articulations du doigt. Qu'un homme sur le plancher présente la pointe d'une aiguille à 12. pouces ou plus de distance; tandis que l'aiguille est ainsi présentée, le conducteur ne sauroit être chargé, la pointe tirant le feu aussi promptement qu'il est poussé par le globe électrique: chargez-le, & présentez alors la pointe à la même distance, & il sera déchargé en un instant. Dans l'obscurité vous pouvez voir une lumiére sur la pointe, lorsqu'on fait l'expérience, & si la personne qui tient la pointe est sur un gâteau de cire, elle sera électrisée en recevant le feu à cette distance. Essayez de tirer de l'électricité avec un corps émoussé, tel qu'un morceau de fer arondi & poli à l'extrémité (je me sers du poinçon d'un Orfévre, de l'épaisseur d'un pouce) il faut que vous l'approchiez à la distance de trois pouces, avant de pouvoir faire l'opération, & elle se fait alors avec un coup & un craquement. Comme le tube de carton pend librement sur des fils de soye, lorsque vous en approchez le morceau de fer, il s'avance pareillement vers ce morceau de fer, étant attiré pendant tout le tems qu'il est chargé; mais si au même instant la pointe est présentée comme auparavant, il se retire, parce qu'il est déchargé par la pointe.
«On ne doit pas prendre à la rigueur tout ce que M. Franklin dit ici du pouvoir & de l'effet des pointes, comme l'ont observé plusieurs de ses Critiques; mais aussi il s'en faut beaucoup qu'on doive tirer de leurs observations toutes les conséquences qu'ils prétendent en résulter. L'un accorde un avantage considérable aux corps pointus sur ceux qui sont arondis ou émoussés, soit pour pousser, soit pour tirer la matière électrique; & veut que la première observation de cet effet soit attribuée à un Européen, comme si notre auteur cherchoit à s'en emparer lui-seul; un autre pour avoir remarqué qu'une pointe d'aiguille présentée à un pied de distance d'un conducteur n'empêche pas qu'on n'en tire quelques étincelles, s'imagine avoir fait une des plus importantes découvertes: que le pouvoir des pointes est une chimère, & que toute la Théorie du Tonnerre est détruite par cette seule observation; d'autres enfin se laissant emporter au gré de leur imagination, vont s'égarer dans des sistêmes dont l'obscurité fait le seul mérite. Mais il n'est pas encore tems de parler de ces différens sentimens; le détail en trouvera mieux sa place dans la suite de cet ouvrage.»
LETTRE II.
DE B. FRANKLIN,ÉCUYER de Philadelphie,
À C. C. ÉCUYER DE LA NOUVELLE
YORK. 1751.M
ONSIEUR,Je fais aux principales questions contenuës dans votre lettre du 28. du courant, une réponse telle que l'embarras de mes affaires présentes me le permet, & je vous demande la permission de vous renvoyer à la dernière piéce du recueil imprimé de mes écrits, pour vous expliquer plus amplement la différence entre ce qui est apellé électrique par soi & non électrique. Quand vous aurez eu le tems de lire & d'examiner ces écrits, je tâcherai de faire quelques-unes des nouvelles expériences que vous proposez, & que vous croyez plus capables de nous éclairer & de nous satisfaire l'un & l'autre sur ce sujet. Je vous serai toujours fort obligé de me communiquer les remarques, objections, &c. qui peuvent se présenter à vous.
Je suis avec un sincère respect, Votre très-humble & très-obligé serviteur, B. FRANKLIN.
QUESTIONS
ET
RÉPONSES;
Auxquelles on renvoye dans la
Lettre précédente.1e. Question. En quoi consiste la différence entre un corps électrique & un corps non-électrique?
§ 21. Réponse. Les termes électrique par soi & non-électrique furent d'abord employés pour distinguer les corps dans la fausse supposition que les seuls corps apellés électriques par soi, contenoient dans leur substance la matiére électrique qui pouvoit être excitée par le frottement, être produite & en être tirée, & communiquée à ceux que l'on apelloit non-électriques, que l'on supposoit dépourvûs de cette matière; car le verre, &c. étant frotté, donnoit des signes qu'il contenoit de cette matière en piquant le doigt, en attirant & repoussant, &c. & qu'il pouvoit communiquer cette vertu aux métaux & à l'eau.
On découvrit dans la suite que le frottement du verre ne produisoit pas la matière électrique, à moins que l'on ne conservât une communication entre le corps frottant & le plancher; & les expériences suivantes prouvèrent que la matière électrique étoit réellement tirée de ces corps, que l'on avoit cru d'abord n'en contenir aucune: alors on douta que le verre & les autres corps apellés électriques par soi, eussent réellement en eux-mêmes quelque matière électrique; puisque, selon les apparences, ils n'en fournissoient aucune autre que celle qu'ils tiroient d'abord de ces corps qui avoient été appellés non électriques; mais quelques-unes de mes expériences prouvent que le verre en contient une grande quantité; & je soupçonne à présent qu'elle est répanduë assez également dans toute la matière du globe terrestre.
Dès-lors on peut abandonner, comme impropres, les termes électrique par soi, & non-électrique; & puisque la seule différence est que quelques corps conduisent la matière électrique, & que les autres ne la conduisent pas, on peut mettre en leur place les termes conducteurs & non-conducteurs.
Si quelque partie de matière électrique est appliquée à un morceau de matière conductrice, elle le pénètre, coule au travers, ou se répand également sur sa surface; si elle est appliquée à un morceau de matière non conductrice, elle ne fera ni l'un ni l'autre. Il n'y a de conducteurs parfaits de la matière électrique, que les métaux & l'eau; les autres corps ne le sont qu'à proportion qu'il entre dans leur composition du mêlange de ceux-ci; s'il n'y en a pas plus ou moins, ils ne seront point du tout conducteurs. 10 Ceci, soit dit en passant, montre entre les métaux & l'eau un nouveau rapport que l'on ignoroit jusqu'à présent.
Note 10: (retour) Cette proposition a été trouvée depuis trop générale: M. Wilson ayant découvert que la cire fonduë & la résine sont aussi conducteurs. On pourroit y ajoûter beaucoup d'autres exemples semblables, comme celui de l'eau qui est un des plus excellens conducteurs d'électricité tant qu'elle conserve sa fluidité, & qui cesse de l'être, dès qu'elle la perd.Je vais tâcher d'éclaircir cela par une comparaison, qui cependant n'en peut donner qu'une foible analogie. La matière électrique passe au travers des conducteurs, comme l'eau passe au travers d'une pierre poreuse, ou se répand sur leur surface, comme l'eau se répand sur une pierre moüillée; mais quand cette matière est appliquée à des corps non conducteurs, c'est comme l'eau qui dégoutte sur une pierre grasse; elle ne la pénétre point, ne passe point à travers, ne s'étend point sur sa surface; mais elle reste par gouttes sur les endroits où elle tombe. Voyez à cet égard ma dernière piéce imprimée.
2e. Question. Quels sont les effets de l'air dans les expériences électriques?
22. Réponse. Voici tous ceux que j'ai remarqués jusqu'à présent; l'air humide reçoit & conduit la matière électrique à proportion de son humidité; l'air parfaitement sec ne le fait point du tout; l'air doit donc être mis dans la classe des non-conducteurs. L'air sec aide à fixer l'atmosphère électrique autour du corps qu'elle environne, & en empêche la dissipation; car dans le vuide elle se dissipe aisément, & les pointes agissent plus fortement; c'est-à-dire, elles poussent ou attirent la matière électrique plus librement & à de plus grandes distances; en sorte que l'air survenant met quelque sorte d'obstacle à ce qu'elle passe d'un corps à un autre. Une bouteille électrique bien propre garnie de son fil-d'archal, remplie d'air au lieu d'eau, ne se chargera, & ne donnera pas plus de choc que si elle étoit remplie de verre pulvérisé; mais étant vuide d'air, elle produit autant d'effet que si elle étoit remplie d'eau. Cependant une atmosphère électrique & l'air ne semblent pas s'exclure l'un l'autre, car nous respirons librement dans une pareille atmosphère, & l'air sec passeroit au travers de cet atmosphère, sans la déplacer ni la disperser. Je doute que le vent Nord-ouest, le plus sec & le plus fort, pût la dissiper.
23. J'électrisai une fois une grosse boule de liége suspenduë au bout d'un fil de soye, long de trois pieds, dont je tenois l'autre bout dans mes doigts: je la fis tourner cent fois en rond comme une fronde, le plus rapidement qu'il me fut possible: elle n'en conserva pas moins son atmosphère électrique, quoiqu'elle eût nécessairement traversé 800. verges 11 d'air, en supposant que dans la rotation mon bras augmentoit d'un pied le demi-diamètre du cercle.
Par l'air parfaitement sec, j'entens le plus sec, que nous puissions avoir; car peut-être n'en avons-nous jamais qui soit parfaitement purgé d'humidité. Une atmosphère électrique formée autour d'un gros fil-d'archal introduit dans une grosse bouteille pleine d'air, n'en fait pas sortir la moindre partie de cet air; & si on détruit cette atmosphère, aucun air ne s'y précipite, comme je l'ai découvert par une expérience très-curieuse, faite avec soin; d'où nous avons conclu que l'élasticité de l'air n'en est point du tout affectée.
LETTRE III.
18. Juillet 1747.
M
ONSIEUR,La peine indispensable de copier de longues lettres, qui peut-être, lorsqu'elles vous sont renduës, ne contiennent rien de nouveau ou d'intéressant pour vous (tant est rapide le progrès que l'on a fait en Europe dans l'Électricité) me décourage presque de vous en écrire davantage sur ce sujet. Je ne puis cependant me dispenser de vous communiquer encore quelques observations sur la merveilleuse bouteille de M. de Muschenbroek.
§. 24. Le corps non-électrique contenu dans la bouteille, étant électrisé, diffère du corps non-électrique électrisé hors de la bouteille, en ce que le feu électrique du dernier est accumulé à sa surface, & forme librement à l'entour une atmosphère électrique d'une étenduë considérable; au lieu que le feu électrique est comprimé dans la substance du premier que le verre borne de toutes parts. 12
25. En même-tems que le fil-d'archal & le dedans de la bouteille, &c. sont électrisés positivement ou plus, le dehors de la bouteille est électrisé négativement ou moins dans une éxacte proportion; c'est-à-dire, que telle que soit la quantité de feu électrique qui passe dans l'intérieur, il en sort de l'extérieur une égale quantité. Pour concevoir ceci, supposez que la quantité commune d'électricité dans chaque surface de la bouteille, avant le commencement de l'opération soit égale à 20; supposez encore qu'à chaque coups de tube, ou à chaque tour du globe il y entre une quantité égale à 1; alors après le premier coup la quantité contenuë dans le fil-d'archal & le dedans de la bouteille sera 21, dans le dehors elle ne sera plus que 19: après le second la partie intérieure aura 22, l'extérieure 18: & ainsi après le le vingtième coup, la partie intérieure aura une quantité de feu électrique égale à 40; celle de la partie extérieure sera égale à zero, & l'opération finit là, car il n'en peut plus être poussé dans la partie intérieure, lorsqu'il n'en peut plus être tiré de la partie extérieure. Si vous essayez d'en introduire davantage il est rejetté par le fil-d'archal, ou casse la bouteille avec un craquement sensible.
26. L'équilibre ne sauroit être rétabli dans la bouteille par la communication intime ou le contact des parties, mais seulement par une communication formée au dehors de la bouteille entre l'intérieur & l'extérieur, par le moyen de quelque corps conducteur qui les touche tous deux, soit en même-tems, auquel cas l'équilibre est rétabli avec une violence & une rapidité inexprimables; soit alternativement, auquel cas il est rétabli par dégrés.
27. Comme il ne peut plus être poussé de feu électrique au dedans de la bouteille, lorsque tout celui du dehors est épuisé; de même dans une bouteille non encore électrisée, on ne sauroit en pousser dans le dedans, lorsqu'il n'en peut sortir du dehors: ce qui arrive ou quand le fond est trop épais, ou quand la bouteille est placée sur un corps originairement électrique. Et réciproquement lorsque la bouteille est électrisée, on ne peut tirer de son intérieur, qu'une assez petite quantité de feu électrique, en touchant le fil-d'archal, à moins qu'une quantité égale ne puisse en même-tems être renduë à l'extérieur. Ainsi posez une bouteille électrisée sur un verre net, ou sur de la cire séche, & vous aurez beau toucher le fil-d'archal, vous n'en pourrez tirer d'étincelle. Posez-la sur un corps non électrique, touchez le fil-d'archal, & le feu en sortira en très-peu de tems; mais il sortira beaucoup-plus vîte encore, si vous formez une communication directe, comme il a été dit ci-dessus, tant ces deux états d'électricité le plus & le moins sont merveilleusement combinés, & balancés dans cette bouteille miraculeuse; ils sont disposés & proportionnés entr'eux d'une manière qui surpasse mon intelligence. La bouteille électrisée est en sens contraire comme le récipient de la machine pneumatique, dont on a vuidé l'air: si l'on ouvroit le robinet l'équilibre seroit rétabli dans un instant au dedans & au dehors du récipient; mais ici, nous avons une bouteille qui contient en même-tems un plein de feu électrique, & un vuide de ce même feu; & quoique le passage de l'un à l'autre paroisse libre, que le plein presse violemment pour se dilater, & que le vuide affamé semble attirer avec une égale violence pour se remplir, l'équilibre ne peut cependant être rétabli entr'eux que par le moyen d'une communication au dehors de la bouteille.
L'ébranlement des nerfs, ou plutôt la convulsion est occasionnée par le passage subit du feu à travers le corps qui le transmet du dedans au dehors de la bouteille: le feu prend la voye la plus courte, comme M. Watson l'a judicieusement observé; mais il ne paroît par aucune expérience, qu'afin qu'une personne reçoive le coup, la communication avec le plancher lui soit nécessaire. Car celui qui tient la bouteille d'une main, & qui touche de l'autre le fil-d'archal, sera également frappé, quoique ses souliers soient secs, ou même qu'il soit sur un gâteau de cire, comme dans toute autre circonstance. Pour ce qui est de l'attouchement du fil-d'archal ou du canon du fusil (car cela revient au même) le feu ne passe point du doigt qui touche au fil-d'archal, comme on le suppose, mais du fil-d'archal au doigt; de là traversant le corps, il passe à l'autre main, & ainsi jusqu'à l'extérieur de la bouteille.