← Retour

Le Téléphone, le Microphone et le Phonographe

16px
100%

Fig. 32.

Il résulte de cette disposition que les vibrations de la lame LL, au moment de leur plus grande amplitude du côté du crayon, tendent à s'amplifier par suite de l'action attractive exercée sur la plaque, et la pression sur le graphite devenant plus forte, accroît les différences de résistance qui en résultent et, par suite, détermine des variations plus grandes dans l'intensité des courants transmis.

Téléphone à réaction de MM. Thomson et Houston.—La disposition téléphonique que nous venons de décrire a été reprise dernièrement par MM. Elihu Thomson et Edwin. J. Houston qui, dans l'English mechanic and World of science du 21 juin 1878, c'est-à-dire deux mois après que M. Hellesen m'a indiqué son système[14], ont publié un article sur un appareil à peu près semblable au précédent.

Dans cet appareil, en effet, le courant qui passe à travers le corps médiocrement conducteur, anime un électro-aimant muni d'une bobine d'induction, et cet électro-aimant réagit sur le diaphragme pour augmenter l'amplitude de ses vibrations et créer en même temps deux actions électriques agissant dans le même sens; seulement la disposition du contact du mauvais conducteur avec la lame vibrante est un peu différente. Au lieu d'un simple contact par pression effectué entre cette lame et un crayon de charbon, c'est un petit fragment de cette matière, taillé en pointe, qui est fixé sur la lame vibrante et qui plonge dans une gouttelette de mercure versée au fond d'une cavité pratiquée à l'extrémité supérieure du fer de l'électro-aimant. La disposition de l'appareil est d'ailleurs la même que celle d'un téléphone ordinaire, et c'est la tige de fer de l'électro-aimant qui représente le barreau aimanté du téléphone Bell. Suivant les auteurs, cet appareil peut être employé comme transmetteur et comme récepteur, et voici comment les effets se produisent dans les deux cas.

Quand l'appareil transmet, le fragment de charbon plonge plus ou moins dans le mercure, et par suite des différences qui se produisent dans les surfaces de contact suivant l'amplitude des vibrations de la lame, le courant subit des variations d'intensité en rapport avec ces amplitudes, et de ces variations résultent, dans la bobine d'induction, des courants induits, qui réagissent sur le téléphone récepteur comme dans l'appareil Bell, et qui sont encore renforcés de ceux qui sont produits magnéto-électriquement par le mouvement du diaphragme devant la bobine d'induction et le fer de l'électro-aimant.

Quand l'appareil est employé comme récepteur, les effets ordinaires se manifestent, car le fer de l'électro-aimant étant aimanté par le courant, se trouve exactement dans les conditions des téléphones Bell ordinaires, et les courants induits lui arrivent de la même manière, seulement plus intenses. MM. Thomson et Houston prétendent que ce système a fourni des résultats excellents et que le son de la voix y est beaucoup moins altéré que dans les autres téléphones.

Téléphones à piles et à transmetteurs liquides.—On a vu que M. Gray, dès l'année 1876, avait imaginé un système téléphonique basé sur les variations de résistance qu'éprouve un circuit complété par un liquide, lorsque la couche liquide interposée entre les électrodes varie d'épaisseur sous l'influence des vibrations de la lame téléphonique mise en rapport avec l'une de ces électrodes. Ce système a été étudié depuis par plusieurs inventeurs, entre autres par MM. Richemond et Salet, et voici les quelques renseignements qui ont été publiés relativement à leurs recherches.

«Un autre téléphone reproduisant les sons articulés, et appelé par M. Richemond électro-hydro-téléphone, a été breveté récemment aux États-Unis. Il est sous certains rapports semblable à celui de M. Edison, mais au lieu de mettre à contribution des disques de charbon pour modifier la résistance du circuit, c'est l'eau qui est employée, et cette eau est mise en rapport avec le circuit et la pile par l'intermédiaire de deux pointes de platine, dont une est fixée sur le diaphragme métallique qui vibre sous l'influence de la voix. Les vibrations de ce diaphragme en transportant la pointe qui lui est adhérente en des points différents de la couche liquide interpolaire, diminuent ou augmentent la résistance électrique de cette couche, et déterminent des variations correspondantes dans l'intensité du courant traversant le circuit. Le téléphone récepteur a d'ailleurs la disposition ordinaire.» (Voir le Telegraphic Journal du 15 sept. 1877, p. 222).

«Il m'a paru intéressant, dit M. Salet, de construire un téléphone dans lequel le mouvement de deux membranes soient absolument solidaires, et pour cela j'ai mis à profit la grande résistance des liquides. M. Bell avait déjà obtenu quelques résultats en attachant à la membrane vibrante un fil de platine communiquant avec une pile, et plongeant plus ou moins dans de l'eau acidulée contenue dans un vase métallique relié lui-même par la ligne au téléphone receveur. J'ai substitué au fil de platine un petit levier d'aluminium portant une lame de platine; à une très-faible distance de celle-ci s'en trouvait une seconde en relation avec la ligne. Les vibrations de la membrane, triplées ou quadruplées dans leur amplitude, ne sont pas altérées dans leurs formes, grâce à la petitesse et à la légèreté du levier; elles déterminent dans l'épaisseur de la couche liquide traversée par le courant, et par suite dans l'intensité de celui-ci, des variations, lesquelles en occasionnent de semblables dans la force attractive de l'électro-aimant récepteur. Sous son influence, la membrane recevante exécute des mouvements solidaires de ceux de la membrane expéditrice. Le son transmis est très-net et, résultat auquel on pouvait s'attendre, le timbre est parfaitement conservé. Les consonnes cependant n'ont pas tout le mordant de celles transmises par l'instrument de M. Bell. C'est un inconvénient qui apparaît surtout quand le levier est un peu lourd; on pourrait facilement le faire disparaître. L'électrolyse produit en outre un bruissement continu qui ne nuit guère à la netteté du son.

«Comme dans ce système on ne demande pas à la voix de produire, mais seulement de diriger le courant électrique engendré par une pile, on peut théoriquement augmenter à volonté l'intensité du son reçu. En réalité j'ai pu faire rendre au récepteur des sons très-forts, et il me semble que cet avantage compense largement la nécessité d'employer une pile et un appareil expéditeur assez délicat. Malheureusement la transmission ne peut se faire à des distances un peu considérables. Supposons qu'un certain déplacement de la membrane expéditrice détermine dans la résistance le même accroissement que cinq à six cents mètres de fil: si la ligne a cinq cents mètres, l'intensité du courant se trouvera réduite de moitié et la membrane recevante prendra une nouvelle position notablement différente de la première; mais si la ligne a cinq cents kilomètres, l'intensité du courant ne sera modifiée que de un millième. Il faudrait donc employer une pile énorme pour que cette variation se traduisît par un changement sensible dans la position de la membrane recevante.»

(Voir Comptes rendus de l'Académie des sciences du 18 février 1878, p. 471.)

M. J. Luvini, dans un article inséré dans les Mondes, du 7 mars 1878, a indiqué un système de rhéotome de courant pour les téléphones à pile qui, malgré sa complication, pourrait peut-être présenter quelques avantages, en ce sens qu'il fournirait des courants alternativement renversés. Dans ce système, la lame vibrante transmettrice qui doit être placée verticalement, réagit sur un fil mobile horizontal replié rectangulairement et portant sur chacune de ses branches deux pointes de platine plongeant dans deux godets remplis d'un liquide médiocrement conducteur; les deux branches de ce fil, isolées l'une de l'autre, sont mises en rapport avec les deux pôles de la pile, et les quatre godets dans lesquels plongent les fils de platine, communiquent d'une manière inverse à la ligne et à la terre par l'intermédiaire de fils de platine immobiles fixés dans les godets. Il résulte de cette disposition que, pour un réglage convenable des distances entre les fils fixes et mobiles, deux courants égaux se trouveront opposés à travers le circuit de la ligne quand le diaphragme sera immobile; mais aussitôt que celui-ci vibrera, les distances respectives des fils varieront, et il en résultera, un courant différentiel dont l'intensité sera en rapport avec l'étendue du déplacement du système ou l'amplitude de la vibration, et dont le sens variera pour les mouvements en dessus et en dessous de la ligne des nœuds de vibration. On aurait donc de cette manière les effets avantageux des courants induits.

Téléphones à pile et à arcs voltaïques.—Pour obtenir des variations de résistance encore plus sensibles qu'avec les liquides et les corps pulvérulents, on a eu l'idée d'avoir recours aux conducteurs gazeux échauffés, et on a combiné plusieurs dispositifs de téléphones à pile dans lesquels le circuit était complété par une couche d'air séparant la lame vibrante d'une pointe de platine servant d'excitateur à une décharge électrique de haute tension. Dans ces conditions, cette couche d'air devient conductrice, et l'intensité du courant qui la traverse est en rapport avec son épaisseur. Ce problème a été résolu soit au moyen de courants voltaïques d'une grande tension, soit au moyen d'une bobine de Ruhmkorff.

Le premier système a été combiné par M. Trouvé, et voici ce qu'il en dit dans le journal la Nature du 6 avril 1878. «Une membrane métallique vibrante constitue l'un des pôles d'une pile à haute tension; l'autre pôle est assujetti devant la plaque par une vis micrométrique qui permet de faire varier, suivant la tension de la pile, la distance à la plaque, sans pourtant jamais être en contact avec elle. Cette distance, toutefois, ne doit pas dépasser celle que pourrait franchir la décharge de la pile. Dans ces conditions, la membrane vibrant sous l'influence des ondes sonores a pour effet de modifier constamment la distance entre les deux pôles et de faire ainsi varier sans cesse l'intensité du courant; par conséquent l'appareil récepteur (téléphone Bell ou à électro-aimant) subit des variations magnétiques en rapport avec les variations du courant qui l'influence, ce qui a pour effet de faire vibrer synchroniquement la membrane réceptrice. C'est donc sur la possibilité de faire varier entre des limites très-étendues la résistance du circuit extérieur d'une pile ou batterie à haute tension dont les pôles ne sont pas en contact, que repose le nouvel appareil téléphonique. On pourra aussi, pour faire varier les conditions de cette résistance, faire intervenir une vapeur quelconque ou bien des milieux différents, tels que l'air ou les gaz plus ou moins raréfiés.»

M. Trouvé pense obtenir de bons résultats avec sa pile à rondelles humectées de sulfate de cuivre et de sulfate de zinc, en en disposant les éléments, au nombre de quatre ou cinq cents, dans des tubes de verre de petit diamètre. Pour obtenir des courants de tension, il n'est pas besoin, comme on le sait, que ces éléments soient de grandes dimensions.

M. de Lalagade a proposé un moyen analogue en employant, pour la formation de l'arc, un courant dont la tension est augmentée par l'interposition dans le circuit d'un fort électro-aimant. Cet électro-aimant réagit d'ailleurs sur un électro-aimant Hughes pour lui faire fournir des courants d'induction susceptibles de faire fonctionner le récepteur. Suivant M. de Lalagade, une pile de Bunsen ou à bichromate de potasse de 6 éléments, suffirait pour obtenir un arc voltaïque continu entre la lame vibrante d'un téléphone et une pointe de platine éloignée suffisamment pour ne donner lieu à aucun contact. Il faudrait cependant en déterminer un en commençant, pour provoquer la formation de cet arc. Dans le système de M. de Lalagade, la lame vibrante doit être munie à son centre d'une petite lame de platine pour éviter les effets d'oxydation de l'étincelle. Suivant l'auteur, les sons ainsi transmis et reproduits dans un téléphone dont le système électro-magnétique serait monté sur une caisse sonore, auraient une intensité plus grande qu'avec les téléphones ordinaires, et il semblerait qu'on vous parlerait dans l'oreille.

Téléphones à mercure.—Ces systèmes sont fondés sur ce phénomène physique découvert par M. Lippmann, que si une couche d'eau acidulée est superposée à du mercure et réunie au moyen d'une électrode et d'un fil avec celui-ci, de manière à constituer un circuit, toute action mécanique qui aura pour effet de presser sur la surface du mercure et de faire varier la forme de son ménisque, déterminera une réaction électrique capable de donner lieu à un courant dont la force sera en rapport avec l'action mécanique exercée. Par réciproque, toute action électrique qui sera produite sur le circuit d'un pareil système, donnera lieu à une déformation du ménisque et par suite à un mouvement de celui-ci, qui sera d'autant plus caractérisé que le tube où se trouve le mercure sera plus petit et l'action électrique plus grande. Cette action électrique pourra d'ailleurs résulter d'une différence de potentiel dans l'état électrique des deux extrémités du circuit mis en rapport avec la source électrique employée ou d'un générateur électrique quelconque[15].

Fig. 33.

On comprend facilement, d'après ces effets, que si on plonge dans deux vases VV1 (fig. 33), remplis d'eau acidulée et de mercure, deux tubes TT1 à bout effilé contenant du mercure M, et qu'on réunisse entre elles, par des fils métalliques PP1, QQ1 d'abord, les deux colonnes de mercure remplissant les tubes et, en second lieu, les couches de mercure qui occuperont le fond des deux vases, on aura, si on a soin de placer les tubes à une certaine distance de la surface du mercure dans les vases, un circuit métallique complété par deux électrolytes, dont l'un pourra accuser les effets mécaniques ou électriques produits au sein de l'autre. Si donc on adapte au-dessus des tubes deux lames vibrantes B, B1, et qu'on fasse vibrer l'une d'elles, l'autre devra reproduire ces vibrations sous l'influence des mouvements vibratoires communiqués par la colonne de mercure correspondante. Ces vibrations seront en rapport elles-mêmes avec les émissions électriques résultant des mouvements de la colonne de mercure du premier tube, et qui sont déterminés mécaniquement. Si un générateur électrique est introduit dans le circuit, l'effet que nous venons d'analyser s'effectuera sous l'influence des modifications dans le potentiel de ce générateur sous l'influence des effets électro-capillaires. Mais si on n'emploie aucun générateur, l'action résultera des courants électriques déterminés par l'action électro-capillaire elle-même. Dans ce dernier cas, cependant, l'appareil doit être construit d'une manière un peu plus délicate, pour obtenir des réactions électriques plus sensibles, et voici comment M. A. Bréguet décrit son appareil.

«L'appareil consiste dans un tube de verre fin, de quelques centimètres de longueur, contenant des gouttes alternées de mercure et d'eau acidulée, de façon à constituer autant d'éléments électro-capillaires associés en tension. Les deux extrémités du tube sont fermées à la lampe, mais laissent pourtant un fil de platine prendre contact de chaque côté sur la goutte de mercure la plus voisine. Une rondelle de sapin mince est fixée normalement au tube par son centre, et permet ainsi d'avoir une surface de quelque étendue à s'appliquer sur la coquille de l'oreille quand l'appareil est récepteur, et de fournir au tube une plus grande quantité de mouvement sous l'influence de la voix, quand l'appareil est transmetteur. Voici les avantages que présentent ces sortes d'appareils:

«1o Ils ne nécessitent l'usage d'aucune pile;

«2o L'influence perturbatrice de la résistance d'une longue ligne est presque nulle pour ces instruments alors qu'elle est encore appréciable avec le téléphone Bell;

«3o Deux appareils à mercure accouplés comme il a été dit plus haut, sont absolument corrélatifs, en ce sens que, même des positions différentes d'équilibre de la surface du mercure dans l'un d'eux, produisent des positions différentes d'équilibre dans l'appareil opposé. On peut donc reproduire à distance, sans pile, non-seulement des indications fidèles de mouvements pendulaires, comme le fait le téléphone de Bell, mais encore l'image exacte des mouvements les plus généraux.»

Nous croyons devoir faire toutefois nos réserves à l'égard de cette assertion: que la résistance du circuit serait sans influence sur ces téléphones. Nous ne le pensons pas et voici pourquoi.

Si j'ai bien compris l'idée de M. A. Bréguet, cette indépendance tiendrait à ce que les effets produits ne sont seulement fonction que des différences de potentiel déterminées dans les conditions d'équilibre électrique du système. Si l'on considère que les courants résultant de l'action électrique de l'eau acidulée sur le mercure, se trouvent annulés à travers le circuit par l'opposition des deux systèmes l'un à l'autre, on comprend aisément que les forces électro-motrices développées se trouvent maintenues sur les deux appareils à peu près dans les mêmes conditions que sur les pôles de deux éléments de pile réunis par leurs pôles de même nom, et pour qu'un courant se manifeste il suffit que la tension électrique de l'une des sources soit affaiblie ou augmentée; mais alors le courant différentiel qui en résulte et qui est seul à agir, est soumis à toutes les lois qui régissent la transmission des courants sur les circuits et, par conséquent, doit être aussi bien affecté par la résistance du circuit que tout autre courant.[Table des Matières]

MODIFICATIONS APPORTÉES À LA CONSTRUCTION DES TÉLÉPHONES BELL.

Les modifications que nous avons étudiées précédemment se rapportent au principe même de l'appareil; celles qui nous restent à étudier ne sont que des modifications dans la forme et la disposition des différents organes qui constituent le téléphone Bell lui-même, et qui ont été combinées en vue d'augmenter l'intensité et la netteté des sons produits.

Téléphones à diaphragmes multiples.—Si l'on considère que les courants induits déterminés dans un téléphone, résultent des mouvements vibratoires du diaphragme, et que ceux-ci sont provoqués par les vibrations de la couche d'air interposée entre ce diaphragme et l'organe vocal, on en déduit naturellement que si ces vibrations de la couche d'air réagissaient sur plusieurs diaphragmes accompagnés isolément de leur organe électro-magnétique, on pourrait déterminer simultanément plusieurs courants induits qui, étant associés convenablement, pourraient fournir des effets d'autant plus intenses sur le récepteur, que les sons qui seraient engendrés résulteraient de plusieurs sources sonores combinées. Plusieurs inventeurs, en partant de ce raisonnement, ont combiné des appareils plus ou moins ingénieux que nous allons maintenant passer en revue, sans pouvoir cependant indiquer celui qui le premier a réalisé cette idée. Elle est, en effet, tellement simple, qu'elle est venue vraisemblablement à l'esprit de plusieurs inventeurs au même moment, et nous voyons que tandis que M. Trouvé indiquait en France, au mois de novembre 1877, ce perfectionnement, on le mettait en essai en Amérique et on le discutait en Angleterre, et même on ne le regardait pas, dans ce dernier pays, comme appelé à donner des résultats favorables; voici, en effet, ce que dit M. Preece à cet égard, dans un mémoire publié par lui le 4 avril 1878, et intitulé: On some physical points connected with the telephone. «Tous ceux qui se sont occupés de perfectionner le téléphone n'ont éprouvé que des désappointements et des insuccès désespérants. Un des premiers essais de ce genre fut entrepris par M. Willmot qui pensait obtenir un bon résultat en augmentant le nombre des diaphragmes, des hélices et des aimants, en réunissant les hélices en séries et en les faisant agir simultanément afin d'augmenter l'énergie des courants développés sous l'influence de la voix; mais l'expérience montra que quand l'appareil agissait directement, l'effet vibratoire de chacun des diaphragmes décroissait proportionnellement à leur nombre, et l'effet général restait le même qu'avec un seul diaphragme. L'instrument de M. Willmot a été construit au commencement d'octobre 1877, et celui de M. Trouvé n'en est qu'une dérivation.»

D'un autre côté, nous voyons que si, en Angleterre, les téléphones à membranes multiples n'ont pas produit de bons résultats, il n'en a pas été de même en Amérique, car les téléphones aujourd'hui les plus en usage dans ce pays sont précisément ceux de MM. Elisha Gray et Phelps, qui sont à plusieurs diaphragmes. Il y a évidemment dans la disposition de ces appareils des détails de construction qui peuvent paraître insignifiants, théoriquement, et qui ont pourtant une grande importance au point de vue pratique, et nous croyons que c'est surtout à cette circonstance que les appareils de ce genre doivent leur réussite ou leur non réussite. Ainsi, par exemple, il paraît que les vibrations de l'air, déterminées dans l'embouchure, doivent être dirigées sur les diaphragmes normalement à leur surface et par l'intermédiaire de canaux distincts; il faut que les espaces vides autour des diaphragmes, soient assez étroits afin d'éviter les échos et les interférences, à moins que la caisse ne soit assez grande pour que ces effets ne soient pas à craindre. Il faut surtout que les matières employées pour la fixation des organes ne soient pas susceptibles de jouer, et c'est pour cela qu'on emploie de préférence le fer ou l'ébonite. Ce qui paraît certain, c'est que quand l'appareil est bien construit, il donne des effets supérieurs aux téléphones Bell, et, s'il faut croire le Telegraphic Journal, un appareil de ce genre expérimenté devant la Société royale de Londres le 1er mai 1878, aurait déterminé des effets d'une intensité proportionnelle au nombre des diaphragmes. Cet appareil avait été combiné par M. Cox Walker de New-York, et possédait huit diaphragmes. C'est d'après lui, la disposition qui donne les meilleurs résultats.

Fig. 34.

Système de M. Elisha Gray.—Le dernier système de M. Elisha Gray, que nous représentons fig. 34, est un de ceux qui ont donné les meilleurs effets. Il est constitué, comme on le voit, par deux téléphones juxtaposés auxquels correspondent deux tuyaux V, issus d'une embouchure commune E. L'un de ces téléphones est vu en coupe sur la figure, l'autre en élévation, et ils correspondent aux deux branches d'un aimant en fer à cheval nickelisé NUS, qui peut servir d'anneau pour le suspendre. Dans le côté de la figure qui montre la coupe, on peut voir en B la bobine d'induction et en A le noyau magnétique qui est en fer doux et vissé sur l'extrémité polaire S de l'aimant; la lame vibrante est en LL, et, comme on le voit, le tuyau de l'embouchure y aboutit normalement à sa surface.

Dans un autre modèle, il existe quatre téléphones juxtaposés au lieu de deux, et il donne des effets encore plus marqués.

Système de M. Phelps.—Ce système n'est qu'une dérivation du précédent, mais il y a deux modèles; dans le grand, qui permet d'entendre comme si la personne avec laquelle vous entrez en correspondance parlait à haute voix et de très-près, les deux téléphones sont placés parallèlement l'un devant l'autre et de manière à présenter verticalement leur diaphragme. L'intervalle compris entre ces deux lames est occupé par un tuyau vertical terminé inférieurement par un tuyau horizontal correspondant aux centres des deux diaphragmes, et c'est sur ce tuyau qu'est adaptée l'embouchure qui ressort extérieurement de la boîte carrée où est renfermé l'appareil. Les bobines d'induction et les noyaux magnétiques qui les traversent sont placés suivant l'axe du système, et semblent constituer une sorte d'axe de roue qui se trouve polarisé par les pôles d'un aimant en fer à cheval dont on peut régler la position par rapport à la surface des diaphragmes au moyen d'écrous mobiles. On dirait en voyant l'appareil, une sorte de tore de gyroscope soutenu par un axe horizontal sur deux piliers issus d'un aimant en fer à cheval aplati.

Au-dessus de ce système, se trouve l'appareil magnéto-électrique de la sonnerie d'appel, qui n'a d'ailleurs rien de particulier et qui se rapproche des avertisseurs allemands dont nous parlerons à la fin de cette notice. Cet appareil est remarquable par la force et la netteté de ses sons et surtout par l'absence de cette voix de polichinelle si désagréable dans les autres téléphones.

Le petit modèle de M. Phelps a la forme d'une tabatière oblongue ou en ellipse dont les deux centres sont occupés par deux systèmes téléphoniques actionnés par un même aimant. Celui-ci est placé horizontalement au-dessous de la tabatière, et ses pôles correspondent aux noyaux magnétiques des bobines. Ces noyaux sont constitués par des tubes de fer fendus longitudinalement pour faire disparaître les réactions d'induction insolites, et les diaphragmes de fer sont appuyés sur cinq ressorts à boudin qui tendent à les soulever au-dessus du système magnétique. Du côté opposé, ces diaphragmes sont munis de bagues en matière demi-élastique, qui empêchent les vibrations centrales des lames de se compliquer de celles des bords. Sur ces lames est ensuite appliqué le couvercle qui est creusé de cavités très-évasées et peu profondes, avec couloirs de communication qui constituent la caisse sonore. L'embouchure correspond à l'une des cavités, et l'autre est fermée par un petit bouchon métallique que l'on retire pour régler l'appareil quand besoin en est. Les vibrations de l'air se trouvant transmises par les couloirs aux deux cavités, les deux téléphones fonctionnent simultanément quoique, à première vue, un seul des téléphones semble être appelé à produire l'effet.

Suivant M. Pope, la perfection de cet appareil tient à la simultanéité des effets produits sur les deux appareils, à la petite bague semi-élastique qui circonscrit les contours de chaque lame vibrante et qui joue le rôle du marteau de l'oreille, c'est-à-dire celui d'étouffoir, aux fentes longitudinales du noyau tubulaire magnétique et à la petitesse des cavités laissées au-dessus des lames vibrantes. L'appareil est d'ailleurs en ébonite et strié sur sa surface pour lui donner plus de fixité dans la main.

Système de M. Cox Walker.—Ce système, dont nous avons dit précédemment quelques mots, a exactement la disposition de celui de M. Elisha Gray. Les aimants qui agissent sur les diaphragmes sont en fer à cheval, et des conduits séparés, issus d'une embouchure commune, dirigent les vibrations de l'air sur les diaphragmes. Ceux-ci, par exemple, ne sont que des parties circonscrites d'un même diaphragme, limitées circulairement par des embouchures correspondantes aux conduits d'air, et qui sont assez comprimées sur leurs bords pour limiter le champ de la vibration.

Système de M. Trouvé.—M. Trouvé a rendu très-simple la disposition des téléphones à double diaphragme en combinant son appareil de manière à faire réagir sur plusieurs lames l'aimant droit de Bell par ses deux pôles à la fois. À cet effet, il emploie un aimant tubulaire et enroule l'hélice sur toute sa longueur, comme on le voit fig. 35. Cet aimant est maintenu dans une position fixe au centre d'une petite boîte cylindrique dont les bases sont taillées de manière à former légèrement entonnoir, et ce sont elles qui servent d'embouchure et de cornet acoustique. Elles sont en conséquence percées d'un trou central plus large en a, du côté où l'on parle, que du côté opposé b. Entre ces bases et les pôles de l'aimant sont disposées deux lames vibrantes en fer M, M' dont l'une, M, est percée d'un trou a, de même diamètre que la partie creuse de l'aimant et plus petit par conséquent que celui de l'embouchure. Enfin entre ces deux lames se trouve échelonnée une série d'autres lames n, n, n disposées parallèlement de manière à laisser passer, au travers, l'aimant et son hélice.

Fig. 35.

Quand on parle devant l'embouchure a, les ondes sonores, en rencontrant les bords de la lame M, la mettent en vibration, et continuant leur route dans l'intérieur du tube aimant, viennent faire vibrer la lame pleine M' qui vibre alors synchroniquement avec la lame M. Il en résulte sur l'aimant tubulaire une double action inductrice qui se traduit par des courants induits développés dans l'hélice, et qui sont d'autant plus énergiques, que chacune des lames renforce les effets magnétiques produits au pôle opposé à celui qu'elles actionnent, comme cela a toujours lieu avec les aimants droits dont le pôle inactif est garni d'une armature. Cet avantage peut même être constaté avec les téléphones ordinaires quand on met seulement en contact la vis qui tient l'aimant avec une masse de fer doux.

Avec la disposition de M. Trouvé, les courants induits déterminés sont donc plus énergiques; mais suivant l'auteur, les sons reproduits seraient aussi plus forts par la multiplicité des effets vibratoires et par l'amplification des effets magnétiques résultant de la disposition plus avantageuse des pièces magnétiques.

«L'oreille placée en a, dit M. Trouvé, perçoit directement les sons produits par la première lame M, et ceux de la seconde lui arrivent par l'intérieur du tube aimant. Cette nouvelle disposition est des plus heureuses pour comparer expérimentalement les résultats fournis par un téléphone à membrane unique (téléphone Bell), et ceux fournis par un téléphone à membranes multiples. En effet, il suffit d'écouter alternativement aux deux faces de ce téléphone, pour s'apercevoir immédiatement de la différence d'intensité des sons perçus. Ceux recueillis en a, du côté de la membrane percée, paraissent sensiblement doubles en intensité de ceux recueillis en b du côté de la membrane pleine qui constitue le téléphone ordinaire.

«La différence est encore plus frappante si, en transmettant ou recevant un son invariable d'intensité à travers un téléphone multiple, on empêche à plusieurs reprises la membrane pleine M' de vibrer.»

Avant cette disposition, M. Trouvé en avait imaginé une autre qu'il présenta à l'Académie des sciences, le 26 novembre 1877 et qui est celle à laquelle nous avons fait allusion au commencement de ce chapitre. Il la décrit en ces termes:

«Pour augmenter l'intensité des effets produits dans le téléphone Bell, j'ai substitué à la membrane unique de ce téléphone, une chambre cubique dont chaque face, à l'exception d'une, est constituée par une membrane vibrante. Chacune de ces membranes, mise en vibration par le même son, influence un aimant fixe également muni d'un circuit électrique. De cette sorte, en associant tous les courants engendrés par ces aimants, on obtient une intensité unique qui croît proportionnellement au nombre des aimants influencés. On peut remplacer le cube par un polyèdre dont les faces seraient formées d'un nombre indéfini de membranes vibrantes afin d'obtenir l'intensité voulue.»

Système de M. Demoget.—Plusieurs autres systèmes de téléphones à membranes multiples ont encore été proposés:

L'un d'eux, imaginé par M. Demoget, consiste à placer en avant et à un millimètre de la plaque vibrante du téléphone ordinaire de Bell, une ou deux plaques vibrantes semblables, en ayant soin de percer dans la première et au centre, un orifice circulaire d'un diamètre égal à celui du barreau aimanté, et dans la seconde un orifice d'un diamètre plus grand.

Suivant l'auteur, on augmente ainsi non-seulement l'intensité des sons transmis, mais encore leur netteté.

«Par cette disposition, dit M. Demoget, la masse vibrante magnétique en regard de l'aimant étant plus grande, la force électro-motrice des courants engendrés est augmentée, et par conséquent les vibrations des plaques du deuxième téléphone sont plus perceptibles.»

Modifications dans la disposition des organes téléphoniques.—Les formes que l'on a données au téléphone Bell ont été, comme on l'a déjà vu, très-diversifiées, mais celles que l'on a adoptées pour ses organes constituants l'ont été encore plus, sans amener de notables améliorations. Voici ce que dit à cet égard M. Preece dans le travail intéressant dont nous avons parlé plus haut: «En augmentant ou en variant les dimensions et la force des aimants, on n'a obtenu que peu ou point d'améliorations, et le plus grand effet obtenu a été réalisé par l'emploi d'aimants en fer à cheval disposés comme l'a indiqué Bell lui-même. Le téléphone a certainement été introduit en Europe avec sa disposition théorique la plus parfaite, quoique Bell travaille encore à l'améliorer.» Cet avis est aussi celui de M. Hellesen qui a fait comme M. Preece beaucoup d'expériences à cet égard, ce qui n'empêche pas beaucoup de personnes d'annoncer qu'ils ont découvert le moyen de faire parler un téléphone devant toute une assemblée. De ce nombre nous citerons M. Righi de Milan, qui prétend avoir obtenu de merveilleux résultats; mais nous avons vu que M. Bell y était également parvenu. Si ce n'est le microphone de M. Hughes, nous ne voyons pas de progrès bien marqués réalisés dans ces nouvelles inventions.

Néanmoins nous croyons utile d'indiquer les dispositions nouvelles qui ont été proposées, et parmi elles nous en citerons une dans laquelle, au lieu d'un aimant droit, on emploie un aimant en fer à cheval, entre les pôles duquel est placée la lame vibrante. Ces pôles sont, à cet effet, munis de semelles de fer, et l'une d'elles est percée d'un trou, qui correspond à l'embouchure de l'appareil. Les deux branches de l'aimant sont d'ailleurs munies d'hélices magnétisantes. Quand on parle à travers le trou, la lame en vibrant détermine dans les deux hélices des courants induits qui seraient de sens contraire si les deux pôles étaient de même nom, mais qui se trouvent être de même sens, en raison de la nature contraire des pôles magnétiques. La lame vibrante joue alors le même rôle que les deux lames de l'appareil de M. Trouvé, que nous avons décrit précédemment.

D'un autre côté, un inventeur anonyme, dans une petite note insérée dans les Mondes, du 7 février 1878, écrit ce qui suit: «L'intensité des courants produits dans le téléphone, étant proportionnelle à la masse de fer doux qui vibre devant le pôle de l'aimant, et d'autre part, la plaque étant d'autant plus sensible qu'elle est plus mince, j'emploie, au lieu de la plaque ordinaire, une plaque réduite par l'acide azotique à la plus faible épaisseur, et je la fixe à un cercle de fer doux qui la tient tendue et fait corps avec elle. Ce cercle se trouve logé dans une ouverture circulaire ménagée à l'intérieur du pavillon. Pour un même téléphone, l'intensité est très-sensiblement augmentée quand on ajuste un système semblable à la place de la plaque ordinaire, ne fut-ce qu'à une des extrémités de la ligne.»

Afin de permettre d'employer des lames vibrantes d'une épaisseur extrêmement faible, M. E. Duchemin a imaginé de mettre à contribution des lames de mica très-minces, saupoudrées de fer porphyrisé qu'il fixe au moyen d'une couche de silicate de potasse. On pourrait, d'après l'auteur, correspondre à voix basse avec ce système, mais on aurait l'inconvénient de crever la lame en parlant trop haut.

M. le professeur Jorgensen, de Copenhague, a construit aussi un téléphone Bell produisant des sons très-intenses et qui lui a permis de constater des effets très-curieux. Dans cet appareil, l'aimant est constitué d'une manière analogue aux électro-aimants tubulaires de Nicklès. C'est d'abord un aimant cylindrique muni à sa partie supérieure d'un noyau de fer doux sur lequel est adaptée la bobine; puis un tube aimanté constitué par une bague d'acier qui enveloppe le premier système magnétique et qui est relié avec celui-ci par une culasse de fer. Enfin, au-dessus des extrémités polaires de ce système, se trouve la lame vibrante qui est disposée comme dans les téléphones ordinaires, et qui présente une grande surface. Quand cette lame n'avait qu'un millimètre d'épaisseur, on pouvait entendre la parole dans toute une chambre; mais quand on mettait l'oreille près de la lame vibrante, les sons n'avaient plus aucune netteté; la parole était confuse et semblait répercutée comme quand on parle dans un espace trop sonore et sujet à produire beaucoup d'échos; on était en un mot étourdi par les sons produits. En prenant une plaque plus épaisse de 3 ou 4 millimètres, par exemple, le téléphone ne produisait plus que les effets des téléphones ordinaires, et il fallait mettre l'oreille contre l'instrument.

M. Marin Maillet, de Lyon, a de son côté imaginé, pour augmenter les sons reproduits par le téléphone, de les faire réfléchir par un certain nombre de réflecteurs qui, en les concentrant à leur foyer sur un résonnateur pouvaient les amplifier considérablement. Cette idée n'ayant pas été accompagnée d'expériences ne présente à la vérité rien de sérieux.[Table des Matières]

EXPÉRIENCES RELATIVES AU TÉLÉPHONE.

Depuis les expériences de M. Bell rapportées dans la première partie de ce travail, bien des essais ont été entrepris par divers savants et divers inventeurs pour étudier les effets produits dans ce curieux instrument, en bien préciser la théorie et en déduire des perfectionnements pour sa construction. Nous allons passer successivement en revue ces différentes recherches.

Expériences sur les effets produits par les courants voltaïques et les courants induits.—L'une des premières et des plus importantes a été l'étude comparative des effets produits dans le téléphone par les courants voltaïques et les courants induits. Dès l'année 1873, M. Elisha Gray avait, comme on l'a vu, transformé les courants voltaïques qu'il employait pour faire vibrer les lames de son transmetteur, en courants induits, par l'intermédiaire d'une bobine d'induction analogue à celle de Ruhmkorff. Les courants voltaïques traversaient alors l'hélice primaire de la bobine, et c'étaient les courants induits qui réagissaient sur l'appareil récepteur en déterminant sur les systèmes électro-magnétiques qui le composaient les vibrations provoquées au poste de transmission. Quand M. Edison combina son système de téléphone à pile, il eut recours au même moyen pour actionner son téléphone récepteur, parce qu'il avait reconnu lui-même que les courants induits étaient plus avantageux que les courants voltaïques. Mais cette particularité du dispositif de M. Edison n'avait pas été bien comprise d'après les descriptions parvenues en Europe; de sorte que plusieurs personnes ont cru avoir imaginé cette disposition avantageuse, et parmi elles nous citerons le colonel Navez et MM. Pollard et Garnier.

Le colonel Navez, dans une note intéressante sur un système nouveau de téléphone présenté à l'Académie royale de Belgique le 2 février 1878, ne fait qu'indiquer cette disposition comme moyen de reproduire la parole à de longues distances; mais il ne cite aucune expérience qui montre nettement les avantages de cette combinaison. MM. Pollard et Garnier vingt jours après M. Navez, et sans avoir eu connaissance du travail de ce dernier, m'ont envoyé les résultats qu'ils avaient obtenus par un moyen semblable, et ces résultats m'ont paru si intéressants que j'en ai fait l'objet d'une communication à l'Académie des sciences, le 25 février 1878. Pour qu'on puisse être bien fixé sur l'importance de ces résultats, je vais rapporter textuellement ce qu'en dit M. Pollard dans la lettre qu'il m'a écrite le 20 février 1878.

«Dans le but d'accroître les variations de l'intensité électrique dans le système d'Edison, nous faisons passer le courant dans le circuit inducteur d'une petite bobine de Ruhmkorff, et nous adaptons le téléphone récepteur aux extrémités du fil induit. Le courant reçu a alors pour intensité la dérivée de celle du courant inducteur, et par suite, les variations produites dans le courant actionnant le téléphone ont beaucoup plus d'amplitude. L'intensité des sons transmis est fortement augmentée, et la valeur de cette augmentation dépend du rapport entre les nombres des tours de spires des circuits inducteurs et induits. Les essais que nous faisons pour déterminer les meilleures proportions sont pénibles, puisqu'il faut faire autant de bobines que d'expériences; jusqu'ici nous avons obtenu d'excellents résultats avec une petite bobine de Ruhmkorff réduite à sa plus simple expression, c'est-à-dire sans condensateur ni interrupteur. Le fil inducteur est du no 16 et forme 5 couches; le fil induit est du no 32 et forme 20 couches. La longueur de la bobine est de 10 centimètres.

«L'expérience la plus remarquable et la plus saisissante est la suivante: en faisant fonctionner le transmetteur avec un seul élément Daniell, on n'obtient rien d'appréciable à la réception, du moins dans le téléphone que j'ai construit, quand il est adapté directement au circuit. En intercalant la petite bobine d'induction, on perçoit alors les sons avec une grande netteté et une intensité égale à celle des bons téléphones ordinaires. L'amplification est alors considérable et très nettement accusée. Comme le courant de pile est alors peu intense, les pointes de plombagine ne s'usent pas, et le réglage persiste longtemps. En employant une pile plus énergique, six éléments au bichromate de potasse (en tension) ou douze éléments Leclanché, on obtient, par l'action directe, une intensité suffisante pour percevoir les sons un peu plus faiblement qu'avec les téléphones ordinaires; mais en intercalant la bobine d'induction, on a alors des sons bien plus intenses et qui peuvent être entendus à 50 ou 60 centimètres de l'embouchure. Des chants peuvent, dans ces mêmes circonstances, être entendus à plusieurs mètres; mais le rapport d'amplification ne paraît pas jusqu'ici être aussi grand que pour le cas d'un seul élément Daniell.»

D'un autre côté, on voit dans les Mondes du 7 mars 1878, la description d'une série d'expériences faites par M. Luvini, professeur de physique à l'académie militaire de Turin qui montrent que l'introduction d'électro-aimants dans le circuit réunissant deux téléphones augmente assez sensiblement l'intensité du son. En en plaçant un près du téléphone transmetteur, l'autre près du téléphone récepteur, on obtient le maximum d'effet, et l'introduction d'un plus grand nombre de ces organes ne produit rien d'utile. Le fil inducteur d'une bobine de Ruhmkorff introduit dans le circuit dont il vient d'être question, n'a provoqué aucun effet d'induction sensible dans le circuit induit, et par conséquent n'a pu faire fonctionner le téléphone correspondant à ce circuit. En revanche, le courant d'une machine de Clarke détermine des sons prononcés qui ressemblent assez à des coups de caisse et sont assourdissants quand l'oreille est appliquée contre l'instrument; mais ils deviennent très-faibles à un mètre de distance. Les courants d'une machine de Ruhmkorff donnent des effets encore plus énergiques: le son remplit toute une chambre. En modifiant la position du marteau de la bobine, le son passe par des tons différents qui sont toujours à l'unisson des interruptions du courant, du moins jusqu'à une certaine hauteur de ton.

Cette propriété des courants induits de la bobine de Ruhmkorff a permis à M. Gaiffe d'obtenir, par leur intermédiaire, un moyen très-facile de réglage pour les téléphones afin de les placer dans leurs conditions de maximum de sensibilité. Il met pour cela à contribution un de ses appareils d'induction à hélices mobiles et à intensités graduées dans le circuit duquel il interpose le téléphone à régler. Les sons résultant du vibrateur se trouvent alors répercutés par le téléphone, et s'entendant à distance de l'instrument, on peut au moyen d'un tournevis, réagir sur la vis à laquelle est fixée l'extrémité libre du barreau aimanté de l'appareil. En la serrant ou en la desserrant, on rapproche ou on éloigne l'autre extrémité de ce barreau de la lame vibrante du téléphone, et on répète ces essais jusqu'à ce qu'on soit arrivé à obtenir le maximum de l'intensité du son.

D'un autre côté, comme les sons rendus par les deux téléphones en correspondance sont d'autant plus intenses que les vibrations produites par eux se rapprochent plus de l'unisson, il est nécessaire de les choisir de manière à émettre les mêmes sons pour une même note donnée, et le moyen indiqué précédemment peut être très-avantageusement employé; car il suffit de noter ceux de ces appareils qui, pour un même réglage de la machine d'induction, donnent la même note dans les conditions de maximum de sensibilité. Un bon accouplement des deux téléphones en correspondance est non-seulement très-important au point de vue de la netteté des transmissions, mais il doit être encore considéré par rapport à la hauteur de la voix de ceux qui sont destinés à en faire usage. Plus cette hauteur est en rapport avec celle des sons produits par les appareils, mieux les sons sont perçus; c'est pourquoi il est des téléphones qui résonnent beaucoup mieux avec la voix des enfants et des femmes qu'avec la voix des hommes, tandis que l'inverse a lieu pour d'autres.

Les vibrations des téléphones sont très-différentes d'un appareil à l'autre, et les moyens que nous venons d'indiquer permettent facilement de s'en rendre compte.

Si on place dans le circuit induit d'une bobine d'induction reliée à un téléphone, un condensateur de grande surface et que l'on éloigne assez le contact de plombagine de la lame vibrante pour ne la toucher que momentanément à chaque vibration, on ne reçoit plus naturellement les articulations des sons, mais seulement les notes d'un air que l'on chante devant la plaque du transmetteur; seulement le courant inducteur ayant des interruptions brusques, engendre des courants induits très-intenses, et suivant MM. Pollard et Garnier, on entend dans tout un appartement l'air chanté, mais avec un timbre particulier qui dépend de la construction du téléphone et du condensateur.

Les avantages des courants induits dans les transmissions téléphoniques se comprennent aisément, si l'on réfléchit que les variations de résistance du circuit qui résultent de la plus ou moins grande amplitude des vibrations de la lame transmettrice étant des valeurs constantes, ne peuvent manifester distinctement leurs effets que sur des circuits courts; par conséquent les articulations des sons qui en résultent, doivent ne plus être très-appréciables sur des circuits très-résistants. Toutefois, si on considère que d'après les expériences de M. Warren de la Rue (voir le Telegraphic journal du 1er mars 1878, p. 97), les courants produits par les vibrations de la voix dans un téléphone ordinaire, représentent en intensité ceux d'un élément Daniell traversant 100 megohms de résistance (soit 10 000 000 de kilomètres de fil télégraphique), on peut comprendre qu'il y a autre chose à considérer dans les effets avantageux des courants induits que la simple question d'intensité plus ou moins grande des courants agissant sur le téléphone récepteur. Avec une pile énergique, il est évident, en effet, que les courants différentiels qui agiront seront toujours plus intenses que les courants induits déterminés par le jeu de l'instrument. Je ne serais pas, quant à moi, éloigné de croire que c'est surtout à leurs inversions successives et à leur faible durée, que les courants induits doivent les avantages qu'ils présentent. Ces courants en effet dont la durée ne dépasse guère, suivant M. Blaserna, 1/200 de seconde, se prêtent beaucoup mieux que les courants voltaïques aux vibrations multipliées qui sont le propre des vibrations phonétiques, et cela d'autant mieux que les inversions successives qui se produisent, déchargent la ligne, renversent les effets magnétiques et contribuent à rendre les actions plus nettes et plus promptes. On ne doit donc pas s'étonner si les courants induits de la bobine d'induction, qui peuvent se produire dans des conditions excellentes au poste de transmission, puisque le circuit du courant voltaïque est alors très-court, soient capables de fournir des résultats non-seulement plus avantageux que les courants voltaïques qui leur donnent naissance, mais même que les courants induits résultant du jeu des téléphones Bell, puisqu'ils sont infiniment plus énergiques.

Quant aux effets relativement considérables produits par les courants si minimes des téléphones Bell, ils s'expliquent facilement par cette considération que, prenant naissance sous l'influence même des vibrations de la lame téléphonique, leurs variations d'intensité conservent toujours le même rapport, quelle que soit la résistance du circuit, et ne sont pas, en conséquence, effacées par la distance séparant les deux téléphones.

Expériences sur le rôle des différents organes d'un téléphone dans la transmission de la parole.—Pour pouvoir apporter au téléphone tous les perfectionnements dont il est susceptible, le point important était d'être bien fixé sur la nature des effets déterminés dans les différentes parties qui le composent et sur le rôle joué par les différents organes qui s'y trouvent mis en jeu. C'est pour être fixé à cet égard qu'un certain nombre de savants et de constructeurs ont entrepris une série d'expériences qui ont fourni de très-intéressantes indications.

L'un des points les plus intéressants à élucider était celui de savoir si la lame vibrante dont MM. Bell et Gray ont muni leur récepteur téléphonique, détermine à elle seule les vibrations complexes qui reproduisent la parole, ou bien si les différentes parties du système électro-magnétique de l'appareil concourent toutes à cet effet. Les expériences faites dès l'année 1837 par M. Page sur les sons produits par les tiges électro-magnétiques résonnantes, et les recherches entreprises en 1846 par MM. de la Rive, Wertheim, Matteucci, etc. sur ce phénomène curieux, permettaient certainement de poser la question, et nous verrons à l'instant qu'elle est beaucoup plus complexe qu'on ne pourrait le croire à première vue.

Pour avoir un point de départ fixe, il fallait avant tout reconnaître si un téléphone dépourvu de lame vibrante peut reproduire la parole. Les expériences faites dès le mois de novembre 1877 par M. Edison[16] avec des téléphones munis d'un diaphragme en cuivre, téléphones qui avaient pu cependant fournir des sons, pouvaient le faire croire, et ces expériences confirmées par M. Preece et surtout par M. Blyth, donnaient plus de poids à cette hypothèse; mais, quand M. Spottiswoode eut assuré, (voir le Telegraphic-Journal du 1er mars 1878, p. 95) que l'on pouvait supprimer entièrement la lame vibrante d'un téléphone sans empêcher la transmission de la parole, pourvu que l'extrémité polaire de l'aimant fût placée très-près de l'oreille, le doute ne fut plus permis, et c'est alors que je présentai à l'Académie des sciences ma note sur la théorie du téléphone qui provoqua bientôt de la part de MM. Navez et Luvini une discussion intéressante dont je parlerai à l'instant. On voulut d'abord nier l'authenticité de ces résultats, puis on chercha à expliquer les sons entendus par M. Spottiswoode par une transmission mécanique des vibrations effectuée de la même manière que dans les téléphones à ficelle; mais de nombreuses expériences entreprises depuis par MM. Warwich, Rossetti, Hughes et beaucoup d'autres ont montré qu'il n'en était pas ainsi, et qu'un téléphone sans diaphragme pouvait transmettre électriquement la parole.

M. Navez lui-même qui, dans l'origine, avait nié le fait, convient aujourd'hui qu'un téléphone sans diaphragme peut émettre des sons, et, même dans certaines conditions exceptionnelles de phonation et d'audition téléphonique, reproduire la voix humaine; mais il croit toujours que l'on ne peut reconnaître s'il y a ou non articulation des mots.

Cette incertitude dans les résultats obtenus par les différents physiciens qui se sont occupés de cette question prouve, toutefois, que les sons ainsi reproduits ne sont pas très-accentués et que, dans des phénomènes physiques appréciables seulement à nos sens, la constatation d'un effet peu accentué dépend surtout de la perfection de nos organes. Nous verrons à l'instant comment cet effet si faible peut se développer dans de grandes proportions par suite de la disposition adoptée par MM. Bell et Gray.

Un second point était encore à éclaircir. Il s'agissait de savoir si le diaphragme d'un téléphone vibre réellement, ou du moins si ses vibrations peuvent entraîner son déplacement, comme cela a lieu dans un trembleur électrique ou un instrument à anches que l'on fait vibrer par un courant d'air. M. Antoine Bréguet a fait à cet égard des expériences intéressantes qui ont montré que ce mouvement n'était pas admissible, car il a pu faire parler très-distinctement des téléphones avec des lames vibrantes de toutes les épaisseurs, et il a poussé les expériences jusqu'à employer des lames de 15 centimètres d'épaisseur. La superposition sur ces lames épaisses de morceaux de bois, de caoutchouc et en général de substances quelconques n'empêchait pas l'effet de se produire. Or on ne peut admettre dans ce cas que les lames puissent être animées d'un mouvement de va-et-vient. J'ai d'ailleurs constaté en superposant une couche d'eau ou de mercure sur ces lames et même sur des diaphragmes minces, qu'aucun mouvement sensible ne les animait, du moins en n'employant, comme source électrique, que les courants induits déterminés par l'action de la parole. Aucunes rides ne se distinguaient à la surface de la couche liquide, même quand pour les apercevoir on employait des appareils à réflexion lumineuse. Comment d'ailleurs pourrait-on admettre qu'un courant qui n'est pas plus intense que celui d'un élément de Daniell ayant traversé dix millions de kilomètres de fil télégraphique, courant qui ne peut fournir de déviation que sur un galvanomètre Thomson, et encore en admettant que le courant a été provoqué en appuyant le doigt sur le diaphragme, ait une énergie suffisante pour faire vibrer mécaniquement par attraction une lame de fer aussi tendue que l'est celle d'un téléphone!!!

Il résulte toutefois d'expériences photographiques très-précises, que des vibrations sont produites par le diaphragme d'un téléphone récepteur; elles sont infiniment petites, si l'on veut, mais elles sont, suivant M. Blake, suffisantes pour qu'un index très-léger, porté par ce diaphragme, puisse fournir quelques petites inflexions sur une ligne décrite par lui sur un enregistreur. Toutefois, de ce qu'un petit mouvement de vibration existe sur ce diaphragme, il ne s'ensuit pas qu'il doive être rapporté à un effet d'attraction, car il peut résulter d'une vibration déterminée par l'action même de la magnétisation au sein du diaphragme[17].

Voici, du reste, une expérience très-intéressante de M. Hughes, répétée d'ailleurs dans d'autres conditions par M. Millar, qui prouve bien en faveur de notre opinion.

Si l'aimant d'un téléphone récepteur est constitué par deux barreaux aimantés parfaitement égaux, séparés l'un de l'autre par un isolant magnétique, et qu'on les place dans la bobine de manière à présenter en face du diaphragme tantôt des pôles de même nom, tantôt des pôles contraires, on reconnaît que le téléphone reproduit mieux la parole dans ce dernier cas que dans le premier. Or, si les effets étaient attractifs il n'en serait pas ainsi, car les actions sont en discordance quand des pôles de noms contraires sont soumis à une même action électrique, tandis qu'elles sont conspirantes dans un même sens quand ces pôles sont de même nom.

D'un autre côté, on reconnaît que si on emploie plusieurs lames de fer superposées pour constituer le diaphragme d'un téléphone récepteur, la transmission des sons est beaucoup plus forte que quand le diaphragme est simple, et pourtant l'attraction, si tant est qu'elle pût se faire, ne pourrait se produire que sur l'un des diaphragmes.

Une expérience très-intéressante de M. A. Bréguet a montré encore que les différentes parties constituantes d'un téléphone, aussi bien le manche, les bornes de cuivre, la coquille que la plaque et le barreau aimanté, peuvent transmettre les sons; et pour arriver à constater ce résultat, M. Bréguet a employé des téléphones à ficelle dont il attachait le fil en différents points du téléphone expérimenté. Il a pu de cette manière non-seulement établir une correspondance entre une personne faisant agir le téléphone électrique et une autre écoutant dans le téléphone à ficelle, mais encore faire parler plusieurs téléphones à ficelle, reliés en plusieurs points du téléphone électrique.

Ces deux séries d'expériences montrent que des sons peuvent être obtenus des diverses parties d'un téléphone sans mouvements vibratoires très-appréciables; mais M. J. Luvini a voulu s'en assurer d'une manière plus nette encore, en examinant si définitivement l'aimantation d'un corps magnétique suivie de sa désaimantation entraînerait une variation dans la forme et les dimensions de ce corps. Il a en conséquence fait construire un grand électro-aimant tubulaire qu'il remplissait d'une assez grande quantité d'eau pour que, ses deux extrémités étant bouchées, le liquide pût apparaître dans un tube capillaire adapté à l'un des bouchons. De cette manière, les plus petites variations dans la capacité de la partie creuse de l'électro-aimant étaient accusées par une ascension ou une descente de la colonne liquide. Or, en faisant traverser l'électro-aimant par un courant électrique de différente intensité, il n'a jamais observé aucun changement dans le niveau de l'eau dans le tube. Avec cette disposition il pouvait mesurer pourtant un changement de volume de 1/30 de millimètre cube. Donc, il résulte de ces effets, que les vibrations produites dans un corps magnétique sous l'influence d'aimantations et de désaimantations successives, sont tout à fait moléculaires. Nous examinerons à l'instant comment ces différentes déductions peuvent être interprétées pour que l'on puisse comprendre la véritable théorie du téléphone; mais avant d'entamer cette étude nous devrons indiquer encore quelques autres expériences qui ont aussi leur intérêt.

Nous avons vu que MM. Edison, Blyth et Preece avaient fait des expériences qui ont montré que des sons pouvaient être reproduits par un téléphone dont le diaphragme était constitué avec une matière non magnétique, mais ils ont fait voir aussi, chose plus curieuse encore, que ces sons pouvaient être transmis sous l'influence de courants induits provoqués par ces diaphragmes mis en vibration devant l'aimant. Déjà MM. Edison et Blyth avaient avancé ce fait, mais M. B.-W. Warwich, dans un article publié dans l'English-mecanic (voir les Mondes du 2 mai 1878), l'a confirmé malgré l'incrédulité qui avait accueilli cette nouvelle; «Il semblerait, dit-il, que pour agir sur l'aimant de manière à produire des courants induits, quelque chose doit d'abord vibrer d'une manière quelconque et être en possession de plus de force vive qu'un gaz; mais il n'est pas nécessaire que la substance soit magnétique, car les corps diamagnétiques agissent très-bien[18].» M. Preece en avait recherché la cause dans les courants induits développés dans un corps conducteur quelconque quand on fait mouvoir devant lui un aimant, courants qui donnent lieu au phénomène découvert par Arago et connu sous le nom de magnétisme de rotation. Ces faits toutefois ne nous paraissent pas encore assez bien établis pour qu'on puisse s'occuper sérieusement de leur théorie, et il pourrait se faire que les effets observés fussent la conséquence de simples transmissions mécaniques.

S'il faut en croire M. Preece, il paraîtrait qu'on pourrait transmettre avec un téléphone dont on remplacerait l'aimant par un simple noyau de fer doux, et il attribue ce résultat au magnétisme rémanent du fer et à l'action magnétique exercée sur ce barreau par le magnétisme terrestre. M. Blake de Boston a constaté aussi le même phénomène, mais il ne l'observait d'une manière marquée que quand le noyau de fer doux était placé dans une direction inclinée par rapport à la terre.

Suivant M. Navez, l'intensité du son reproduit dans un téléphone dépend, non-seulement de l'amplitude des vibrations, mais aussi de la surface vibrante par suite de l'action qu'elle exerce sur la couche d'air qui doit transmettre les sons. (Voir le mémoire de M. Navez dans le Bulletin de l'Académie de Belgique, du 7 juillet 1878).

Expériences sur les effets résultant de chocs mécaniques communiqués à différentes parties d'un téléphone.—Si dans un téléphone ordinaire on adapte une pièce de fer contre la vis qui tient l'aimant, on reconnaît que les sons transmis sont un peu plus accentués, ce qui tient au renforcement du pôle actif de l'aimant; mais on entend au moment où l'on applique la pièce de fer contre la vis, un bruit assez prononcé qui semble être dû aux vibrations mécaniques déterminées dans le barreau au moment du choc. M. le lieutenant de vaisseau des Portes a fait dernièrement sur ce genre de phénomènes des expériences intéressantes. Ainsi il a reconnu que, si sur un circuit téléphonique de 100 mètres complété par le sol, le téléphone transmetteur est réduit au simple aimant muni de sa bobine qui constitue son organe électro-magnétique, et que cet aimant soit suspendu verticalement par un fil de soie, la bobine en haut, un coup frappé sur cet aimant, soit au moyen d'un morceau de bois, soit au moyen d'une tige de cuivre, pourra déterminer dans le téléphone récepteur, des sons distincts qui augmenteront d'autant plus d'intensité que le coup sera frappé plus près de la bobine, et qui deviendront plus forts encore, mais moins nets, quand on mettra en contact avec le pôle supérieur de l'aimant une lame vibrante de fer doux.

Quand le corps avec lequel on frappe est en fer, les sons dont il vient d'être question sont plus accentués qu'avec le morceau de bois, et quand l'aimant est muni de sa lame vibrante appliquée sur son pôle actif, on saisit en même temps que le bruit du choc une vibration de la plaque.

Si le corps percuteur est un aimant, les bruits produits sont semblables à ceux que l'on obtient avec un percuteur en fer, quand l'effet est produit entre pôles de même nom, mais si ce sont des pôles de noms contraires, on entend après chaque coup un second bruit produit par l'arrachement de l'aimant et qui paraît être un coup frappé beaucoup moins fort. Naturellement ces bruits augmentent si l'aimant est muni de sa lame vibrante.

Si on parle sur la plaque vibrante du téléphone transmetteur quand elle est appliquée sur le pôle de l'aimant, on entend sur le téléphone récepteur des sons variés assez semblables à ceux produits par les vibrations d'une corde à violon, et le bruit que fait la plaque quand on la retire du contact de l'aimant est parfaitement entendu au récepteur.

Quand on parle au récepteur, la personne qui a l'oreille appliquée sur la plaque vibrante du transmetteur, disposé comme ci-dessus, entend très-bien, mais ne distingue pas les paroles, ce qui tient sans doute au magnétisme condensé au point de contact de l'aimant et de la lame vibrante, et qui rend les variations magnétiques plus lentes et plus difficiles à s'effectuer.

Pour percevoir les coups frappés sur l'aimant avec une tige de fer doux, la présence de la bobine n'est pas nécessaire. En enroulant trois tours seulement du fil conducteur dénudé, servant de fil de ligne, sur une extrémité de l'aimant, on peut percevoir les sons, et ces sons cessent, comme dans les autres expériences, quand le circuit est interrompu, ce qui montre bien qu'on ne peut les attribuer à une transmission mécanique. Mais ce qui est le plus curieux, c'est que si l'aimant est interposé dans le circuit de manière à en faire partie intégrante, et que les deux extrémités du fil conducteur soient enroulées autour des bouts de l'aimant, les coups frappés sur celui-ci avec le fer doux, sont perçus dans le téléphone aussitôt que l'un des pôles de l'aimant est muni de la plaque vibrante.

J'ai répété moi-même les expériences de M. des Portes en frappant simplement sur la vis qui, dans les téléphones ordinaires fixe l'aimant à l'appareil, et j'ai constaté que, toutes les fois que le circuit était complet, les coups frappés avec un couteau d'ivoire étaient répétés par le téléphone; ils étaient très-faibles, il est vrai, quand la lame vibrante était enlevée, mais très-marqués avec l'addition de cette lame. Au contraire, toutes les fois que le circuit était interrompu, aucun bruit n'était perçu. Ces bruits étaient du reste plus forts quand les coups étaient frappés sur la vis que quand ils étaient frappés sur le pôle même de l'aimant au-dessus de la bobine, ce qui tenait à ce que, dans le premier cas, le barreau pouvait vibrer librement, tandis que dans le second, les vibrations se trouvaient étouffées par suite de la fixation du barreau.

On pourrait, jusqu'à un certain point, expliquer ces effets en disant que les vibrations déterminées sur l'aimant par le choc, ont pour résultat de déterminer des déplacements ondulatoires des particules magnétiques dans toute l'étendue du barreau, et que de ces déplacements doivent résulter, dans l'hélice, d'après la loi de Lenz, des courants induits dont la force augmente quand la puissance de l'aimant est surexcitée par la réaction de son diaphragme, lequel joue le rôle d'armature, et par celle du corps percuteur quand il est magnétique. Toutefois, les dernières expériences de M. des Portes sont plus difficiles à expliquer, et il pourrait bien y avoir autre chose que des courants induits ordinaires.

Ces expériences ne sont pas les seules qui montrent les effets déterminés sous l'influence d'ébranlements moléculaires de diverses natures.—Ainsi, M. Thomson de Bristol a reconnu que si on introduit dans le circuit d'un téléphone ordinaire, une pièce de fer et une tige de laiton placée perpendiculairement sur le fer, il suffira de donner un coup sur la tige de laiton pour déterminer un son énergique dans le téléphone. D'un autre côté, il a montré aussi que si on entoure les deux extrémités polaires d'un aimant droit de deux bobines d'induction, mises en rapport avec le circuit d'un téléphone, et qu'on promène au-dessous de l'aimant, dans l'intervalle séparant les deux bobines, la flamme d'une lampe à alcool, on entend un bruit très-marqué aussitôt que la flamme exerce son action sur le barreau aimanté. Cet effet provient sans doute de l'affaiblissement du magnétisme du barreau déterminé par l'effet calorifique alors produit. Enfin j'ai reconnu moi-même que des grattements effectués sur l'un des fils qui réunissent deux téléphones entre eux, sont perçus dans ces téléphones, quel que soit d'ailleurs le point du circuit où ces grattements sont produits. Les sons ainsi provoqués sont, à la vérité, très-faibles, mais ils se distinguent nettement, et acquièrent une plus grande intensité quand le grattement est effectué sur les bornes d'attache des fils des téléphones. Tous ces sons, d'ailleurs, ne peuvent pas être la conséquence d'une transmission mécanique de vibrations, car quand le circuit est interrompu, on ne peut en percevoir aucun. D'après ces expériences, on pourrait croire que certains bruits que l'on constate dans les téléphones expérimentés sur les lignes télégraphiques, pourraient bien provenir des frictions des fils sur les supports, frictions qui donnent lieu à ces sons souvent très-intenses que l'on entend quelquefois sur certaines lignes télégraphiques.

Théorie du téléphone.—Il semblerait résulter des diverses expériences que nous avons rapportées précédemment, que l'explication qu'on donne généralement des effets produits dans le téléphone, serait très-incomplète, et que la transmission de la parole, au lieu de résulter de la répétition par la membrane du téléphone récepteur (sous l'influence des effets électro-magnétiques produits) des vibrations déterminées par la voix sur la membrane du téléphone transmetteur, devrait provenir des vibrations moléculaires déterminées dans le système électro-magnétique tout entier et particulièrement sur le noyau magnétique enveloppé par l'hélice. Ces vibrations seraient dès lors de la même nature que celles qui ont été étudiées dans les tiges électro-magnétiques résonnantes par MM. Page, de la Rive, Wertheim, Matteucci, etc., et ce sont elles qui ont été mises à contribution dans les téléphones de Reiss, de Cécil et Léonard Wray, et de Vander-Weyde. Dans cette hypothèse, la lame vibrante aurait pour principal rôle à remplir, de réagir pour la production des courants induits quand elle serait mise en vibration par la voix, et de renforcer par sa réaction sur l'extrémité polaire du barreau aimanté, les effets magnétiques déterminés au sein de celui-ci, quand elle vibrerait sous l'influence électro-magnétique, ou du moins, quand elle serait actionnée par l'aimant. Or comme ces vibrations sont d'autant plus amplifiées pour une même note, que la lame est plus flexible, et comme, d'un autre côté, les variations dans l'état magnétique d'une lame s'effectuent d'autant plus rapidement qu'elle présente moins de masse, on comprend immédiatement pourquoi il convient d'employer des lames vibrantes très-minces et relativement petites, comme l'a fait M. Edison. Dans le cas de la transmission, la plus grande amplitude des vibrations augmente l'intensité des courants induits transmis. Dans le cas de la réception, les variations d'aimantation déterminant les sons, sont rendues plus accentuées et plus nettes, aussi bien dans la membrane armature que dans le barreau aimanté; il y a donc avantage dans les deux cas. Cette hypothèse n'exclut d'ailleurs en rien l'effet phonétique des vibrations mécaniques et physiques qui pourraient se produire dans la lame armature sous l'influence des magnétisations et démagnétisations qu'elle subit, et qui viendraient ajouter leur action à celle des noyaux magnétiques.

Quelle est la nature des vibrations transmises dans le téléphone récepteur? C'est une question encore obscure, et ceux qui s'en sont occupés sont loin d'être d'accord; elle a même été l'objet d'une discussion intéressante en 1846 entre MM. Wertheim et De la Rive, et les découvertes nouvelles la rendent encore plus compliquée. Suivant M. Wertheim, ces vibrations seraient à la fois longitudinales et transversales et proviendraient d'attractions échangées entre les spires de l'hélice magnétisante et les particules magnétiques du noyau; suivant M. De la Rive elles seraient, dans le cas qui nous occupe, uniquement longitudinales et résulteraient de contractions et dilatations moléculaires déterminées par des arrangements différents pris par les molécules magnétiques, sous l'influence des aimantations et des désaimantations. C'est cette explication qui nous paraît la plus rationnelle, et une expérience faite en 1846 par M. Guillemin semblerait la confirmer. M. Guillemin avait en effet reconnu que si une tige flexible de fer entourée d'une hélice magnétisante est pincée dans un étau à l'une de ses extrémités et recourbée sous l'influence d'un poids adapté à l'autre extrémité, on peut la faire redresser instantanément par le passage d'un courant à travers l'hélice magnétisante. Or ce redressement ne peut, dans ce cas, provenir que de la contraction déterminée par les molécules magnétiques qui, sous l'influence de leur aimantation, tendent à provoquer des attractions intermoléculaires et à modifier les conditions d'élasticité du métal. On sait en effet que du fer ainsi aimanté acquiert la dureté de l'acier et qu'il ne peut plus être attaqué par la lime.

Quoi qu'il en soit, il est impossible de ne pas admettre que des sons soient produits dans le noyau magnétique aussi bien que dans l'armature, sous l'influence d'effets électriques intermittents. Ces sons pourront d'ailleurs être musicaux ou articulés; car du moment où le transmetteur aura provoqué l'action électrique convenable, nous ne voyons pas de raison pour que des vibrations effectuées transversalement ou longitudinalement transmettent les uns plutôt que les autres. Ces vibrations, du reste, sont, comme on l'a vu, pour ainsi dire microscopiques[19].

M. J. Luvini, qui partage nos idées sur la théorie qui précède, croit cependant qu'elle ne peut satisfaire complétement l'esprit, que si l'on fait entrer en ligne de compte la réaction déterminée par le barreau magnétique sur l'hélice qui l'entoure. «Il ne peut y avoir, dit-il, action sans réaction, et en conséquence les changements moléculaires déterminés dans le barreau doivent provoquer des variations correspondantes dans l'hélice, et les deux effets doivent contribuer à la production des sons.» Il cite à l'appui de son dire l'expérience suivante du professeur Rossetti, qui est réellement curieuse.

Dans une suite de recherches qu'il avait entreprises sur les téléphones sans lame vibrante, ce savant avait employé sans le savoir un téléphone dont la bobine n'était pas bien fixée sur le noyau magnétique, et il remarqua à son grand étonnement que cette bobine oscillait le long du noyau magnétique, au passage des courants discontinus, et qu'elle produisait des sons. Or ce mouvement était une réaction déterminée par les effets magnétiques produits.

La difficulté d'expliquer la production des sons dans un organe électro-magnétique dépourvu d'armature, avait fait nier dans l'origine l'authenticité des expériences que nous avons rapportées précédemment, et M. Navez avait entamé avec nous une discussion qui ne sera pas sans doute terminée de sitôt; mais il est résulté de cette discussion, que ce savant a été obligé de convenir que le son de la voix humaine pouvait être reproduit par un récepteur téléphonique privé de sa plaque. Toutefois, il croit encore que cette reproduction est trop faible pour qu'on puisse reconnaître s'il y a ou s'il n'y a pas articulation, et soutient toujours que les vibrations transversales de la plaque résultant d'effets attractifs, sont les seules qui reproduisent la parole articulée avec une intensité suffisante pour être utile.

Il est certain que l'articulation de la parole exige une certaine puissance de vibration qu'un téléphone sans diaphragme ne peut pas facilement fournir, car il faut considérer que, dans un appareil ainsi disposé, les effets magnétiques sont réduits dans un rapport considérable qui est celui de la force magnétique développée dans le barreau à cette force multipliée par elle-même, et qu'une action, aussi faible que l'est celle accusée dans un téléphone, devient pour ainsi dire nulle, quand par suite de la suppression de l'armature, elle n'est plus représentée que par la racine carrée de la force qui l'a déterminée. Il peut donc se faire que des sons à peine perceptibles dans un téléphone sans diaphragme, le deviennent quand, par suite de la présence de ce diaphragme, la cause qui les provoque est multipliée par elle-même et qu'il s'y ajoute encore les vibrations déterminées au sein de l'armature elle-même sous l'influence des magnétisations et démagnétisations qu'elle subit.

Pour montrer que l'action du diaphragme n'est pas aussi indispensable que M. Navez semble le supposer, et que les vibrations de ce diaphragme ne sont pas le résultat d'attractions électro-magnétiques, il suffit de se reporter aux expériences de M. Hughes que nous avons exposées p. 129. Il est certain que si cet effet était en jeu, on entendrait mieux quand les deux barreaux aimantés présenteraient des pôles de même nom devant le diaphragme, que quand ils présenteraient des pôles de noms contraires, puisque toutes les actions seraient alors conspirantes dans le même sens. D'un autre côté les plus grands effets que l'on obtient avec des diaphragmes multiples juxtaposés éloignent complétement cette hypothèse. Néanmoins, il pourrait se faire que dans les téléphones électro-magnétiques, le diaphragme de fer, en raison des variations faciles de son état magnétique, pût contribuer beaucoup à rendre les sons articulés plus nets et plus distincts; il pourrait alors réagir à la manière de la langue; mais nous croyons que c'est surtout à l'amplitude des vibrations déterminées sur le transmetteur, qu'on doit rapporter la plus ou moins grande netteté des sons articulés. Ainsi M. Hughes a démontré que les charbons de bois métallisés employés dans ses parleurs microphoniques étaient préférables aux charbons de cornue pour transmettre la parole, précisément parce que, étant moins conducteurs, les différences de résistance qui résultent des différences de pression, sont plus accentuées et permettent par conséquent de mieux faire saisir les différentes nuances des sons vocaux qui constituent l'articulation de la parole.

Mais il ne s'agit plus aujourd'hui d'une discussion d'effets magnétiques; la science a marché depuis que M. Navez a ouvert la discussion, et nous lui demanderons maintenant comment, avec sa théorie des mouvements attractifs du diaphragme des téléphones, il peut expliquer la reproduction de la parole par un microphone récepteur dépourvu de tout organe électro-magnétique, et je puis lui certifier que dans les expériences que j'ai faites, la transmission des vibrations ne pouvait se faire mécaniquement, car quand le circuit était coupé ou la pile retirée du circuit, aucun son n'était entendu. Il faut décidément que M. Navez compte avec les vibrations moléculaires. Certainement, c'est un terrain nouveau à étudier; mais c'est parce que nous nous acharnons en Europe à vouloir rester dans les limites de théories incomplètes que nous avons laissé aux américains, qui ne s'en inquiètent guère, la gloire de faire les grandes découvertes qui nous étonnent depuis quelques mois. Que M. Navez lise avec soin les notes de MM. Luvini, des Portes, Trève, Hughes, Rossetti, et nous sommes certain que ses idées se modifieront.

En résumé, la théorie du téléphone et du microphone considérés comme organes reproducteurs de la parole est encore loin d'être élucidée complétement, et dans des questions aussi neuves, il serait imprudent d'être trop affirmatif.

La transmission électrique des sons, dans les téléphones magnéto-électriques, ne laisse pas que de présenter quelques complications théoriques. On a vu en effet qu'on pouvait les obtenir avec des diaphragmes en matière non magnétique et même par l'effet de simples vibrations mécaniques déterminées par des chocs. Est-ce à des réactions d'induction de l'aimant sur la lame vibrante mise en action qu'il faut les attribuer dans le premier cas, et aux mouvements des particules magnétiques devant les spires de l'hélice qu'il faut les rapporter dans le second?.... la question est encore bien obscure; néanmoins on peut concevoir que les modifications de l'action inductrice de l'aimant sur le diaphragme mis en vibration puissent entraîner des variations de l'intensité magnétique, de même qu'on peut admettre une action de la même nature par suite de l'éloignement, et du rapprochement des particules magnétiques des spires de l'hélice; toutefois M. Trève croit, dans ce dernier cas, à une action particulière qu'il a déjà eu occasion d'étudier dans d'autres circonstances, et voit dans le courant ainsi produit l'effet d'une transformation du travail mécanique déterminé au sein des molécules magnétiques. Ce qui complique encore la question, c'est que souvent ces effets sont produits par des transmissions simplement mécaniques.

Il était encore un point intéressant à étudier et sur lequel M. Navez a donné quelques indications intéressantes; c'était de savoir si les effets étaient plus énergiques, pour la réception, avec des aimants permanents, qu'avec des aimants temporaires. Dans le premier modèle de téléphone exposé à Philadelphie par M. Bell, le récepteur était, comme on l'a vu, constitué par un électro-aimant tubulaire dont le pôle cylindrique était muni de la lame vibrante; mais M. Bell n'a pas maintenu cette disposition, et s'il faut en croire ce qu'il dit à cet égard dans son mémoire, ce serait afin de rendre son appareil à la fois récepteur et transmetteur[20]. Toutefois M. Navez prétend que le rôle de l'aimant est plus important, et même qu'il est indispensable dans les conditions actuelles de sa construction. «On peut, dit-il, dans certaines circonstances, et en construisant l'instrument d'une manière spéciale, faire parler un Bell récepteur sans aimant permanent; cependant, l'instrument tel qu'il est construit généralement, reste muet si on retire l'aimant pour le remplacer par un cylindre de fer doux fixé dans la bobine. Néanmoins il suffit d'approcher le pôle d'un aimant permanent d'un cylindre en fer doux, pour rendre la voix au téléphone: il résulte de nos expériences que pour qu'un téléphone Bell fonctionne bien, il est indispensable que la plaque soit soumise à une tension magnétique initiale, obtenue au moyen d'un aimant permanent. Cette assertion est d'ailleurs facile à déduire de considérations théoriques.»

Quant à l'action des courants envoyés à travers l'hélice d'un téléphone, elle s'explique aisément. Quelles que soient les conditions magnétiques du barreau, les courants induits de différente intensité qui agissent sur lui, provoquent des modifications dans son état magnétique, d'où résultent des vibrations moléculaires par contraction et dilatation. Ces vibrations se produisant également dans l'armature sous l'influence des aimantations et désaimantations qui y sont déterminées par l'action magnétique du noyau, renforcent celles de ce noyau, en même temps que les modifications dans l'état magnétique du système se trouvent amplifiées par suite de la réaction des deux pièces magnétiques l'une sur l'autre. Quand le barreau est en fer doux, les courants induits agissent en créant des aimantations plus ou moins énergiques auxquelles succèdent des désaimantations qui sont d'autant plus promptes que des courants inverses succèdent toujours à ceux qui ont été actifs, ce qui rend les alternatives d'aimantation et de désaimantation plus nettes et plus rapides. Quand le barreau est aimanté, l'action est différentielle, et peut s'exercer dans un sens ou dans un autre, suivant que les courants induits correspondant aux vibrations effectives, passent à travers la bobine réceptrice dans le même sens ou en sens contraire du courant magnétique du barreau. Si ces courants sont de même sens, l'action est renforçante, et les modifications sont effectuées comme si c'était une aimantation qui était déterminée. Si ces courants sont de sens contraire, l'effet inverse se produit; mais quels que soient ces effets, les vibrations moléculaires conservent les mêmes rapports réciproques et la même hauteur dans l'échelle des sons musicaux. Si on étudie la question au point de vue mathématique, on trouve la présence d'une constante en rapport avec l'intensité du courant qui n'existe pas dans les vibrations mécaniques et d'où résulterait peut-être le timbre particulier que présente la parole reproduite dans le téléphone, timbre qui l'a fait comparer à la voix de polichinelle. M. Dubois Raymond a du reste publié sur cette théorie un mémoire intéressant qui est rapporté dans les Mondes du 21 février 1878 (p. 314), mais que nous ne reproduisons pas ici, parce que les considérations qu'il émet sont trop scientifiques pour les lecteurs auxquels s'adresse notre ouvrage. Nous ajouterons seulement que d'après M. C. W. Cuningham, les vibrations produites dans un téléphone ne peuvent se manifester exactement dans les mêmes conditions que celles qui affectent le tympan de l'oreille, parce que celui-ci a une forme particulière en entonnoir qui exclut toute note fondamentale qui lui soit spécialement propre, tandis qu'il n'en est pas de même pour les barreaux et lames magnétiques qui possèdent des notes fondamentales capables de masquer beaucoup des demi-tons de la voix. C'est suivant lui à ces notes fondamentales qu'il faut attribuer l'altération de la voix observée dans le téléphone.[Table des Matières]

EXPÉRIENCES DIVERSES FAITES AVEC LE TÉLÉPHONE.

Nous allons nous occuper maintenant d'une série d'expériences qui, tout en faisant ressortir les merveilleuses propriétés du téléphone peuvent encore donner quelques indications sur l'importance des actions qui sont susceptibles de l'affecter.

Expériences de M. d'Arsonval.—On a vu que le téléphone était un instrument d'une extrême sensibilité, mais cette sensibilité n'avait pu être appréciée d'une manière bien nette par les moyens ordinaires. Pour la mesurer en quelque sorte, M. d'Arsonval a eu l'idée de la comparer à celle du nerf d'une grenouille, appareil qui, comme on le sait, avait été regardé jusqu'ici comme le plus parfait de tous les galvanoscopes, et le résultat de ses expériences a été que le téléphone est deux cents fois plus sensible que ce nerf. Voici du reste comment M. d'Arsonval rend compte de ses recherches à cet égard dans les comptes rendus de l'Académie des sciences du 1er avril 1878.

«Je prépare une grenouille à la manière de Galvani. Je prends l'appareil d'induction de Siemens usité en physiologie sous le nom d'appareil à chariot; j'excite avec la pince ordinaire le nerf sciatique, et j'éloigne la bobine induite jusqu'à ce que le nerf ne réponde plus à l'excitation électrique. Je remplace alors le nerf par le téléphone, et le courant induit qui n'excitait plus le nerf fait vibrer avec force cet appareil. J'éloigne la bobine induite et le téléphone vibre toujours.

«Dans le silence de la nuit, j'ai pu entendre vibrer le téléphone en éloignant la bobine induite à une distance quinze fois plus grande que celle du minimum d'excitation du nerf; par conséquent, si l'on admet pour l'induction comme pour les actions à distance la loi des carrés inverses, on voit que, dans cette circonstance, le téléphone est au moins deux cents fois plus sensible que le nerf.

«Nous possédons dans le téléphone un instrument d'une sensibilité exquise. Il est, comme on le voit, beaucoup plus sensible que la patte galvanoscopique, et j'ai songé à en faire un galvanoscope. On n'étudie que très-difficilement les courants musculaires et nerveux avec un galvanomètre de 30000 tours, parce que l'appareil manque d'instantanéité et que l'aiguille, à cause de son inertie, ne peut manifester de variations électriques se succédant rapidement, comme celles qui ont lieu par exemple dans le muscle lorsqu'on le tétanise. Cet inconvénient n'existe plus avec le téléphone qui répond toujours par une vibration à un changement électrique, quelque rapide qu'il soit. C'est donc un excellent instrument pour étudier le tétanos électrique du muscle. On peut être sûr d'avance que le courant musculaire excitera le téléphone puisque ce courant excite le nerf qui est moins sensible que cet appareil. L'instrument nécessite pour cela quelques dispositions spéciales.

«Le téléphone ne peut servir qu'à constater les variations d'un courant électrique, quelque faibles qu'elles soient, il est vrai; mais j'ai trouvé le moyen par son intermédiaire de constater la présence d'un courant continu, quelque faible qu'il puisse être. J'y ai réussi en employant un artifice très-simple. Je lance dans le téléphone le courant supposé, et, pour obtenir des variations, j'interromps mécaniquement ce courant par le diapason. Si aucun courant ne traverse le téléphone, l'instrument reste muet. Si, au contraire, le plus faible courant existe, le téléphone vibre à l'unisson du diapason.»

M. le professeur Eick, de Wurtzbourg, a aussi employé le téléphone pour des recherches physiologiques, mais en suivant une voie précisément contraire à celle explorée par M. d'Arsonval. Il a reconnu qu'en mettant les nerfs d'une grenouille en rapport avec un téléphone, on les contractait d'une manière énergique aussitôt qu'on parlait dans l'appareil, et l'énergie des contractions dépendait surtout de la nature des mots prononcés; ainsi, il a constaté que les voyelles a, e, i ne produisaient presque pas d'effet, tandis que l'o et surtout l'u en déterminaient un très-énergique. Les mots liege-still prononcés à haute voix ne produisent qu'une très-faible action, tandis que le mot tucker, même prononcé à voix basse, agitait fortement la grenouille. Ces expériences, qui rappellent celles de Galvani, étaient naturellement basées sur les effets produits par les courants induits développés dans le téléphone, et prouvent que si cet instrument est un galvanoscope plus sensible que le nerf d'une grenouille, celui-ci est plus impressionnable que nos galvanomètres les plus perfectionnés.

Expériences de M. Demoget.—Pour comparer l'intensité des sons transmis par le téléphone avec l'intensité du son primitif, M. Demoget a disposé dans une plaine découverte deux téléphones. Il tenait à l'oreille le premier, tandis qu'un aide s'éloignait de lui, en répétant sans cesse la même syllabe avec la même intensité de voix dans le deuxième instrument. Il entendait d'abord le son transmis par le téléphone, puis ensuite le son qui arrivait directement, en sorte que rien n'était plus facile que de comparer. Or, voici les résultats qu'il a obtenus.

«À quatre-vingt-dix mètres, les intensités perçues étaient égales, la plaque vibrante étant éloignée du tympan d'environ cinq centimètres. À ce moment, le rapport des intensités était donc de 25 à 81.000.000. En d'autres termes, le son transmis par le téléphone n'était que 1/3.000.000 du son émis. «Mais comme les stations dans lesquelles on opérait ne pouvaient être considérées comme deux points vibrant librement dans l'espace, il y avait lieu, dit M. Demoget, de réduire ce rapport de moitié, à cause de l'influence du sol, et d'admettre que le son transmis par le téléphone était 1.500.000 fois plus faible que celui émis par la voix.

«Comme, d'autre part, on sait que l'intensité de deux sons est proportionnelle au carré de l'amplitude des vibrations, on peut en conclure que les vibrations des deux plaques des téléphones étaient directement proportionnelles aux distances, c'est-à-dire, comme 5 est à 9.000, ou que les vibrations du téléphone transmetteur étaient dix-huit cents fois plus grandes que celles du téléphone récepteur. On peut donc comparer celles-ci à des vibrations moléculaires, car celles du téléphone transmetteur ont déjà une amplitude très-petite.

«Sans diminuer en rien le mérite de la remarquable invention de Bell, continue M. Demoget, on peut conclure de ce qui précède que le téléphone, au point de vue du rendement, est une machine qui laisse bien à désirer, puisqu'elle ne transmet que la dix-huit centième partie du travail primitif, et que si cet instrument a donné des résultats si inattendus, cela tient bien plus à la perfection de l'organe de l'ouïe qu'à la perfection de l'instrument lui-même.»

M. Demoget attribue cette déperdition du travail produit dans le téléphone, surtout aux huit transformations successives que subit le son avant d'arriver à l'oreille, sans parler de celle qui est due à la résistance électrique de la ligne et qui, à elle seule, peut absorber toute l'énergie.

Pour se rendre compte de la force des courants induits qui actionnent un téléphone, M. Demoget a cherché à les comparer à des courants d'une intensité connue, produisant des vibrations de même nature et de même force, et pour cela il a mis à contribution deux téléphones A et B en communication au moyen d'une ligne de 20 mètres de longueur. Près de la plaque vibrante du téléphone A, il a appuyé légèrement une petite lime sur laquelle on frottait avec une lame métallique; le bruit ainsi produit, était naturellement transmis par le téléphone B avec une certaine intensité qu'on pouvait apprécier. Il a ensuite remplacé le téléphone A par une pile, et la lime était introduite dans le circuit en la reliant à l'un des pôles. Le courant ne pouvait être fermé qu'en frottant la lime au moyen de la lame de ressort mise en communication avec l'autre extrémité du circuit. Mais on pouvait obtenir ainsi des courants interrompus qui, en faisant vibrer le téléphone B, produisaient un bruit dont l'intensité variait avec la force du courant de la pile. En cherchant l'intensité électrique capable de fournir de cette manière un son équivalant à celui produit par le téléphone A, M. Demoget a reconnu qu'elle correspondait à celle que fournit une petite pile thermo-électrique constituée par un fil de fer et un fil de cuivre de deux millimètres de diamètre, aplatis à leur extrémité et soudés à l'étain; le faible courant résultant de cette pile ne faisait dévier que de deux degrés un galvanomètre à fil court.

Cette estimation ne nous paraît pas toutefois réunir assez de conditions d'exactitude pour qu'on puisse en déduire le degré de sensibilité du téléphone, sensibilité qui, d'après les expériences de MM. Warren de la Rue, Brough, Peirce, est infiniment plus grande. M. Warren de la Rue, en effet, comme on l'a déjà vu, a reconnu au moyen du galvanomètre de Thomson, et en ramenant à la déviation fournie sur l'échelle de ce galvanomètre celle déterminée par un élément Daniell traversant un circuit complété par un Rhéostat, que les courants émis par un téléphone ordinaire de Bell sont équivalents à celui d'un élément Daniell traversant 100 megohms de résistance, c'est-à-dire dix millions de kilomètres de fil télégraphique. Suivant M. Brough, le directeur des télégraphes de l'Inde, le plus fort courant qui, à un moment donné, fait fonctionner le téléphone Bell, n'excède pas 1/1.000.000.000 de l'unité de courant, c'est-à-dire, de un Weber, et le courant qui fait agir les relais dans l'Inde a 400 000 fois cette force. Enfin, le professeur Peirce, de Boston, compare les effets du courant téléphonique à ceux qui seraient produits par une source électrique dont la force électro-motrice serait la 1/200.000 partie d'un volt, ou de celle d'un élément Daniell. Du reste, comme l'observe M. Peirce, il est difficile de fixer un chiffre exact pour estimer la valeur réelle de ces sortes de courants, car elle est essentiellement variable suivant l'intensité des sons produits sur le téléphone transmetteur; mais on peut affirmer qu'elle est moindre que la 1/1.000.000 partie du courant employé ordinairement pour faire fonctionner les appareils télégraphiques sur les lignes.

Expériences de M. Hellesen, de Copenhague.—Pour se rendre compte des effets réciproques produits par les différentes parties d'un téléphone, M. Hellesen a construit des téléphones de mêmes dimensions avec trois dispositions différentes et inverses les unes des autres. Il en a d'abord établi une dans les conditions ordinaires, puis une autre dans les conditions du premier système de Bell, c'est-à-dire, en employant pour lame vibrante une membrane portant à son centre une petite armature de fer, et enfin la troisième disposition mettait à contribution un aimant cylindrique creux, à l'un des pôles duquel était fixée la lame vibrante, laquelle pouvait se mouvoir devant une spirale plate en limaçon, présentant le même nombre de spires que les deux autres hélices. Dans cette dernière disposition, les courants induits résultant des vibrations de la voix pouvaient être assimilés à ceux qui seraient la conséquence du rapprochement et de l'éloignement de deux spirales parallèles, dont une serait parcourue par un courant. Or, de ces trois dispositions, c'est celle qui a été adoptée par Bell, qui a fourni les meilleurs effets, et c'est un résultat réellement bien rare dans l'histoire des découvertes, qu'un inventeur soit arrivé du premier coup à la meilleure disposition à donner à son instrument.

Expériences de M. Zetzche. Il est toujours un certain noyau d'esprits de travers qui veulent nier l'évidence, le plus souvent pour faire acte de contradiction, et qui croient ainsi diminuer l'importance d'une découverte dont le retentissement les exaspère. Le téléphone et le phonographe ont été l'objet de ces critiques de mauvais aloi. Ne s'est-on pas avisé de dire que l'action électrique n'entrait pour rien dans les effets produits par le téléphone, et qu'il fonctionnait toujours sous l'influence de vibrations mécaniques transmises par le fil conducteur, absolument comme cela a lieu dans les téléphones à ficelle!!.. On a eu beau démontrer à ces esprits avisés que quand l'un des fils du circuit était interrompu, aucun son n'était produit, cette démonstration ne leur a pas suffi, et pour détruire toute objection de leur part, M. Zetzche a fait des expériences dans lesquelles il a démontré, par le mode même de la propagation du son, que l'idée d'attribuer le son produit dans un téléphone à une vibration mécanique est tout simplement absurde. Voici en effet ce qu'il dit à cet égard dans un article inséré dans le Journal télégraphique de Berne du 25 janvier 1878.

«La correspondance par téléphone entre Leipzig et Dresde a fourni une nouvelle preuve que c'est bien par les courants électriques et non par la propagation purement mécanique des sons que se reproduisent les mots à la station de réception. La vitesse de propagation du son dans le fer (pour les ondulations longitudinales), pouvant être évaluée à 5 kilomètres par seconde, le son devrait parcourir la distance de Leipzig à Dresde en 115/5 c'est-à-dire en 23 secondes. Jusqu'à l'arrivée de la réponse il devrait s'écouler au moins autant de secondes. Par conséquent, dans chaque changement de direction de la correspondance, il devrait donc intervenir un intervalle de plus de 3/4 de minute, ce qui n'est point du tout le cas.»

Expérience que tout le monde peut faire.—Nous terminerons ce chapitre consacré à l'exposé des diverses expériences faites avec le téléphone, par l'indication d'une expérience curieuse qui, bien que très-facile à répéter, n'a été signalée qu'il y a quelques mois par les journaux de Pennsylvanie. Il s'agit de la transmission de la parole par un téléphone simplement appliqué sur l'une des parties du corps humain voisines de la poitrine. On a même prétendu que toutes les parties du corps pouvaient produire ce résultat; mais dans les expériences que j'ai faites je n'ai pu réussir que quand le téléphone était fortement appliqué sur ma poitrine. Dans ces conditions, et à travers même mes vêtements, j'ai pu me faire entendre, mais en parlant à voix très-haute, ce qui ferait supposer que le corps de l'homme participe tout entier aux vibrations provoquées par la voix. Dans ce cas, les vibrations sont transmises mécaniquement au diaphragme du téléphone transmetteur, non plus par l'air mais par le corps lui-même agissant sur la coque du téléphone.[Table des Matières]

LE MICROPHONE.

Le microphone n'est en réalité qu'un transmetteur de téléphone à pile, mais avec des caractères tellement particuliers qu'il constitue par le fait une invention originale qui méritait bien d'être désignée sous un nom particulier. Dans ces derniers temps il s'est élevé, à l'occasion de cette invention, entre M. Hughes, son auteur, et M. Edison, l'inventeur du téléphone à charbon et du phonographe, une contestation regrettable que les journaux ont envenimée et qui n'avait pas réellement sa raison d'être; car, en définitive si le principe physique du microphone peut paraître le même que celui du transmetteur téléphonique à charbon de M. Edison, sa disposition est tout à fait différente, la manière d'agir sur lui n'est pas la même, et les effets qu'on lui demande généralement sont d'une toute autre nature. C'est plus qu'il n'en faut pour constituer une invention nouvelle. D'ailleurs si on voulait bien examiner à fond le principe même de l'instrument, on pourrait s'étonner des prétentions que M. Edison a élevées. En effet M. Edison ne peut pas réclamer comme lui appartenant la découverte de la propriété que possèdent certains corps médiocrement conducteurs d'avoir leur conductibilité modifiée par la pression. J'ai fait dès l'année 1856 et à diverses autres époques, par exemple en 1864, 1872, 1875, de nombreuses expériences à cet égard, qui sont consignées dans le tome I de la seconde édition de mon exposé des applications de l'électricité, p. 246[21] et dans plusieurs notes présentées à l'Académie des sciences et insérées aux comptes rendus. D'un autre côté, M. Clérac s'était servi en 1865 d'un tube muni de plombagine avec une électrode mobile pour produire des résistances variables dans un circuit télégraphique. D'ailleurs, dans le transmetteur téléphonique de M. Edison, le disque de charbon doit être, comme on l'a vu, soumis à une certaine pression initiale afin que le courant ne soit pas interrompu par suite des vibrations de la lame contre laquelle il appuie, et il en résulte que les modifications de résistance du circuit qui donnent lieu aux sons articulés, ne sont produites que par des augmentations ou des diminutions plus ou moins grandes de pression, c'est-à-dire par des actions différentielles. Or nous allons voir à l'instant qu'il n'en est pas de même pour le microphone. D'abord, dans ce dernier appareil, le contact du charbon s'effectue sur d'autres charbons et non avec des disques de platine, et ces contacts sont multiples; en second lieu, la pression exercée sur tous les points de contact est excessivement légère, ce qui fait qu'on peut faire varier les résistances dans un rapport infiniment plus grand que dans le système de M. Edison, et c'est précisément ce qui permet d'amplifier les sons; en troisième lieu on peut employer d'autres corps que le charbon pour constituer un microphone; enfin pour faire agir le microphone, il n'est pas besoin de lame vibrante; le simple intermédiaire de l'air suffit, et c'est ce qui permet de faire fonctionner cet appareil à une distance assez grande de lui. Nous ne voyons donc pas de raisons qui aient pu motiver la réclamation de M. Edison et surtout les termes dont il s'est servi à l'égard de MM. Preece et Hughes qui sont des hommes considérables dans la science et très-respectables sous tous les rapports. Nous regrettons, je le répète encore, cette triste sortie de M. Edison qui ne peut que lui faire du tort, et qui n'est pas digne d'un inventeur de sa taille. Si maintenant envisageant la question sous un autre aspect, nous demandions à M. Edison pourquoi, puisqu'il a inventé le microphone, n'en a-t-il pas fait connaître les propriétés et les résultats?... Quelle réponse pourrait-il faire? Il fallait pourtant que ces résultats fussent bien saisissants puisque le microphone est devenu en peu de jours l'objet de la préoccupation du monde entier; or il est évident pour nous qu'avec le génie perspicace du célèbre inventeur Américain il aurait fait valoir cette découverte s'il l'eût faite réellement, et il en aurait évidemment tiré parti. Ce qui peut justifier la réclamation de M. Edison, c'est que, n'étant pas au courant des découvertes purement scientifiques faites en Europe, il a cru que son invention résidait toute entière dans le principe sur lequel elle repose et qu'il croyait avoir découvert.

Dans l'appareil de M. Hughes, que nous étudions en ce moment, les sons, au lieu d'arriver très-affaiblis à la station de réception, comme cela a lieu avec les téléphones ordinaires, même avec celui de M. Edison, y sont comme je l'ai déjà dit, le plus souvent reproduits avec une amplification notable, et de là le nom de microphone que M. Hughes a donné à ce système téléphonique; on peut par conséquent l'employer à révéler des sons très-faibles. Cependant nous devons le dire dès à présent, cette amplification n'existe réellement que quand ces sons résultent de vibrations transmises mécaniquement à l'appareil transmetteur par des corps solides. Les sons propagés par l'air sont sans doute un peu plus intenses qu'avec le système ordinaire, mais ils le sont moins que ceux qui leur donnent naissance, et, en conséquence, on ne peut pas dire dans ce cas que le microphone agit par rapport aux sons comme le microscope le fait par rapport aux objets éclairés par la lumière. Il est vrai qu'avec ce système on peut parler de loin dans l'appareil, et j'ai pu même transmettre de cette manière une conversation à voix élevée étant placé à huit mètres du microphone. J'ai pu encore parler à voix basse près de ce dernier et me faire entendre parfaitement dans l'appareil récepteur, et même faire arriver les sons à une distance de dix à quinze centimètres de l'embouchure du téléphone récepteur, en élevant un peu la voix; mais l'amplification du son n'est réellement bien manifeste que quand celui-ci résulte d'une action mécanique transmise au support de l'appareil. Ainsi les pas d'une mouche marchant sur ce support s'entendent parfaitement et vous donnent la sensation du piétinement d'un cheval, le cri même de la mouche, surtout son cri de mort devient, suivant M. Hughes, perceptible; le frôlement d'une barbe de plume ou d'une étoffe sur la planche de l'appareil, bruits complétement imperceptibles à l'audition directe, s'entendent d'une manière marquée dans le téléphone. Il en est de même des battements d'une montre posée sur le support de l'appareil, que l'on entend même à dix ou quinze centimètres du récepteur. Une petite boîte à musique placée sur l'instrument donne des sons tellement forts par suite des trépidations qui l'agitent, qu'il est impossible de distinguer les sons, et pour les percevoir, il faut disposer la boîte près de l'appareil sans qu'elle soit en contact avec aucune de ses parties constituantes. C'est alors par les vibrations de l'air que l'appareil est impressionné, et les sons transmis sont plus faibles que ceux que l'on entend près de la boîte. En revanche les vibrations déterminées par le balancier d'une pendule mise en communication par une tige métallique avec le support de l'appareil, s'entendent admirablement, et on peut même les distinguer quand cette liaison est effectuée par l'intermédiaire d'un fil de cuivre. Un courant d'air projeté sur le système donne la sensation d'un écoulement liquide perçu dans le lointain. Enfin les trépidations causées par le passage d'une voiture dans la rue se traduisent par des bruits crépitants très-intenses qui se combinent à ceux d'une montre que l'on écoute et qui souvent prédominent.

Fig. 36.

Différents systèmes de microphones.—Le microphone a été combiné de plusieurs manières, mais la disposition qui a donné à l'instrument le plus de sensibilité est celle que nous représentons fig. 36. Dans ce système, on adapte l'un au-dessus de l'autre sur un prisme vertical de bois M, deux petits cubes de charbon A, B, dans lesquels sont percés deux trous servant de crapaudines à un crayon de charbon C en forme de fusée, c'est-à-dire avec des pointes émoussées par les deux bouts, et d'une longueur d'environ quatre centimètres; il ne faut pas qu'il soit trop grand afin d'avoir peu d'inertie. Ce crayon appuie par une de ses extrémités dans le trou du charbon inférieur et doit ballotter dans le trou supérieur qui ne fait que le maintenir dans une position plus ou moins rapprochée de celle de l'équilibre instable, c'est-à-dire de la verticale. En imprégnant ces charbons de mercure par leur immersion à la température rouge dans un bain de mercure, les effets, suivant M. Hughes, sont meilleurs, mais ils peuvent très-bien se produire sans cela. Les deux cubes de charbon sont d'ailleurs munis de contacts métalliques qui permettent de les mettre en rapport avec le circuit d'un téléphone ordinaire, dans lequel est interposée une pile Leclanché de 1 ou 2 éléments ou mieux de 3 éléments Daniell avec une résistance additionnelle intercalée dans le circuit.

Pour faire usage de l'appareil, on le place avec la planche qui lui sert de support sur une table en ayant soin d'interposer entre cette planche et la table, pour amortir les vibrations étrangères, plusieurs doubles d'étoffe disposés de manière à former coussin ou, ce qui est mieux, une bande de ouate ou deux tubes de caoutchouc; alors il suffit de parler devant le système, pour qu'aussitôt la parole soit reproduite dans le téléphone, et si l'on place sur la planche support la montre dont il a été question ou une boîte dans laquelle est renfermée une mouche, tous ses mouvements sont entendus. L'appareil est si sensible que c'est à voix peu élevée que la parole s'entend le mieux, et on peut, comme je l'ai déjà dit, l'entendre en parlant à une distance de huit mètres du microphone. Toutefois, quelques précautions doivent être prises pour obtenir les meilleurs résultats avec ce système, et, en outre des coussins que l'on place sous l'appareil, pour le soustraire aux vibrations étrangères qui pourraient résulter de mouvements insolites communiqués à la table, il faut encore régler la position du crayon de charbon. Celui-ci doit en effet toujours appuyer en un point du rebord du trou supérieur, mais comme le contact peut être plus ou moins bon, l'expérience seule peut indiquer la meilleure position à lui donner, et pour la trouver on peut employer avantageusement le moyen de la montre. On met alors le téléphone à l'oreille et on place le crayon dans diverses positions jusqu'à ce qu'on ait trouvé celle donnant les effets maxima. Pour éviter ce réglage, qui, avec la disposition précédente, doit être souvent répété, MM. Chardin et Berjot, qui construisent habilement ce modèle de téléphone, lui ont ajouté une petite lame de ressort dont la pression peut être réglée et qui appuie contre le charbon vertical lui-même. Ce système est très-bon.

Fig. 37.

M. Gaiffe de son côté a donné une forme plus élégante à l'appareil en le construisant comme un appareil de physique. La figure 37 représente l'un des deux modèles qu'il a combinés. Dans ce modèle, les cubes ou dés de charbon A et B sont soutenus par des porte-charbons métalliques, dont l'un, E, le supérieur, est mobile sur une colonne de cuivre G et peut être placé dans telle position qu'il convient à l'aide d'une vis de pression V. On peut de cette manière incliner plus ou moins le crayon de charbon et augmenter à volonté la pression qu'il exerce sur le charbon supérieur. Quand le crayon est vertical, l'appareil transmet difficilement les sons articulés, en raison de l'instabilité du point de contact, et des bruissements de toute nature se font entendre; quand il est trop incliné, les sons sont plus purs et plus distincts, mais l'appareil est moins sensible. Il est un degré d'inclinaison qui doit être recherché, et l'expérience l'indique facilement. Dans un autre modèle, M. Gaiffe substitue au crayon de charbon une lame carrée et très-mince de la même matière, taillée en biseau sur ses côtés inférieur et supérieur et pivotant dans une rainure pratiquée dans le charbon inférieur. Cette lame ne fait qu'appuyer contre le charbon supérieur sous une légère inclinaison, et dans ces conditions il transmet beaucoup plus fortement et plus distinctement la parole.

Fig. 38.

Je dois encore parler d'une autre disposition combinée par le capitaine du génie Carette qui a donné pour les sons non articulés d'excellents résultats. Le charbon vertical a alors la forme d'une poire et repose par son bout le plus gros dans un large trou fait dans le charbon inférieur; son bout supérieur qui est pointu, vient s'engager dans un petit trou pratiqué dans le charbon supérieur, mais de manière à ne le toucher qu'à peine, et une vis de réglage permet de rapprocher plus ou moins ces deux charbons. Dans ces conditions, les contacts sont si instables qu'un rien peut les supprimer, et alors les variations dans l'intensité du courant transmis sont si fortes que les sons produits par le téléphone peuvent s'entendre à plusieurs mètres.

La figure 38 représente une autre disposition combinée par M. Ducretet. Les deux dés de charbon sont en D, D', le charbon mobile en C, le téléphone en T et les boutons d'attache du circuit en B, B'. Un détail du dispositif des charbons se voit à gauche de l'appareil. Le bras qui porte le charbon supérieur D est adapté à une tige munie d'un plateau P' à surface rugueuse, et une petite cage C' en toile métallique que l'on pose sur ce plateau permet d'étudier les mouvements d'insectes vivants.

Fig. 39.

Quand il s'agit de transmettre la parole assez fortement pour qu'un téléphone puisse se faire entendre dans toute une salle, le microphone doit avoir une disposition particulière, et la figure 39 représente celle qui a donné à M. Hughes les meilleurs résultats; il donne alors à l'appareil le nom de parleur.

Sous cette nouvelle forme le charbon mobile appelé à produire les contacts variables est adapté en C, à l'extrémité d'une bascule horizontale BA pivotant en son point milieu et convenablement équilibrée. Le support sur lequel cette bascule oscille est adapté à l'extrémité d'une lame de ressort pour rendre l'appareil plus susceptible de vibrer, et le charbon inférieur est placé en D au-dessous du premier. Il est constitué par deux fragments superposés afin d'augmenter la sensibilité de l'appareil, et nous avons représenté en E le fragment supérieur qui est soulevé pour montrer qu'on peut employer à volonté un seul des deux charbons. Ce charbon E, se trouve, à cet effet collé à une petite lame de papier fixée à la planchette et qui sert d'articulation. Un ressort antagoniste R, dont on peut régler la tension au moyen d'une vis t, permet de régler la pression des deux charbons. M. Hughes recommande l'emploi de charbons en sapin métallisé[22]. Le tout est ensuite recouvert d'une enveloppe semi-cylindrique HIG en bois blanc, dont les parois sont très-minces surtout les deux bases, et on fixe le système accompagné d'un autre semblable dans une boîte plate MJLI qui présente du côté MI une ouverture devant laquelle on parle, en ayant soin de placer la lèvre inférieure à deux centimètre du fond de la boîte. Si les deux microphones sont réunis en quantité et si la pile employée se compose de deux éléments à bichromate de potasse, on agit assez fortement sur le courant, pour que, passant à travers une bobine d'induction de six centimètres seulement de longueur, il puisse faire parler un téléphone du modèle carré de Bell, de manière à être entendu de tous les points d'une salle. Il faut par exemple lui adapter un porte-voix de près d'un mètre de longueur. M. Hughes prétend que les sons produits dans ces conditions sont à peu près aussi élevés que ceux du phonographe, et M. W. Thomson m'a confirmé ce fait.

Le microphone peut être aussi constitué par des fragments de charbon entassés dans une boîte entre deux électrodes métalliques, ou enfermés dans un tube avec deux électrodes représentées par deux fragments de charbon allongés. Dans ce dernier cas, les charbons doivent autant que possible être cylindriques, et ceux que construit M. Carré pour les bougies Jablochkoff sont très-bons pour cela. Nous représentons fig. 40 un appareil de ce genre que j'ai fait disposer en instrument par M. Gaiffe, et qui peut, comme nous le verrons à l'instant, servir de thermoscope. Cet instrument est représenté fig. 41 et se compose d'un tuyau de plume rempli de fragments de charbon, dont ceux qui occupent les deux bouts sont montés dans des garnitures métalliques. L'une de ces garnitures se termine par une vis à large tête qui permet, au moyen des supports A, B, de pousser plus ou moins les charbons dans le tube et, par conséquent, d'établir un contact plus ou moins intime entre les divers fragments de charbon. Quand cet appareil est convenablement réglé, il suffit de parler au-dessus du tube pour que la parole soit reproduite. C'est donc un microphone aussi bien qu'un thermoscope. Une chose réellement curieuse que M. Hughes a remarquée, c'est que si on prononce séparément les différentes lettres de l'alphabet devant cette sorte de microphone, on constate qu'il en est qui se font beaucoup mieux entendre que d'autres, et ce sont précisément celles qui correspondent aux aspirations de la voix.

Fig. 40 et 41.

On peut encore obtenir un microphone de ce genre en remplaçant les fragments de charbon par des poussières plus ou moins conductrices, des limailles métalliques même. J'ai démontré, en effet, dans mon mémoire sur la conductibilité des corps médiocrement conducteurs, que le pouvoir conducteur de ces poussières varie d'une manière considérable avec la pression et avec la température, et comme le microphone est fondé sur les différences de conductibilité résultant des différences de pression, on comprend facilement que ce moyen puisse être employé comme organe de transmission téléphonique. Dans une disposition récente de ce système, M. Hughes a aggloméré ces poussières avec une sorte de gomme, et il en a formé un crayon cylindrique qui, étant relié à deux électrodes bonnes conductrices, a pu fournir des effets analogues à ceux dont nous avons parlé précédemment. Comme on l'a vu, toutes les limailles métalliques peuvent être employées, mais M. Hughes donne la préférence à la poussière de charbon.

D'après M. Blyth, une boîte plate d'environ quinze pouces sur neuf, remplie de ces charbons échappés à la combustion que l'on appelle en Angleterre cinders gas, et aux deux extrémités de laquelle sont fixées deux électrodes de fer-blanc, est une des meilleures dispositions de microphones. Suivant lui, trois de ces appareils suspendus comme des tableaux contre les murs d'une chambre auraient suffi, sous l'influence d'un seul élément Leclanché, pour faire entendre dans le téléphone tous les bruits produits dans la chambre, et surtout les airs chantés. M. Blyth prétend même qu'on peut construire un microphone capable de transmettre la parole avec un simple charbon relié au fil du circuit par ses deux bouts, mais il faut que ce charbon soit un cinder gas; un charbon de cornue pourvu de pinces d'attache à ses deux extrémités, ne pourrait produire cet effet.

L'un des effets les plus intéressants de ces sortes de microphones, c'est qu'ils peuvent fonctionner sans pile, du moins, si on les dispose de manière à former eux-mêmes l'élément voltaïque, et pour cela, il suffit de verser de l'eau sur les charbons. M. Blyth qui a parlé le premier de ce système, n'indique pas nettement sa disposition, et on peut supposer que son appareil n'était autre que celui que nous avons décrit précédemment, auquel il aurait ajouté de l'eau. J'ai répété cette expérience en employant des électrodes zinc et cuivre et des fragments un peu gros de charbon de cornue, et j'ai parfaitement réussi. J'ai, en effet, pu transmettre de cette manière, non-seulement tous les sons de la montre et de la boîte à musique, mais encore la parole qui se trouvait même souvent plus nettement exprimée qu'avec un microphone ordinaire, car on n'entendait pas les crachements qui accompagnent souvent les transmissions téléphoniques de ce dernier. M. Blyth prétend aussi que l'on peut obtenir de cette manière la transmission des sons sans que l'appareil soit pourvu d'eau; mais il croit que c'est à l'humidité de l'haleine de celui qui parle qu'il faut attribuer ce résultat. Il est certain qu'il ne faut pas beaucoup d'humidité pour mettre en action un couple voltaïque, surtout quand on a pour appareil révélateur un téléphone. Du reste le microphone ordinaire peut être lui-même employé sans pile, si le circuit dans lequel il est interposé est en communication avec le sol par l'intermédiaire de plaques de terre; les courants telluriques qui traversent alors le circuit sont suffisants pour que les battements d'une montre posée sur le microphone soient parfaitement perceptibles. M. Cauderay, de Lausanne, dans une note envoyée à l'Académie des sciences, le 8 juillet 1878, annonce qu'il a fait cette expérience sur un fil télégraphique réunissant l'hôtel des Alpes à Montreux, à un chalet situé à 500 mètres de là, sur la colline.

Le microphone employé comme organe parlant.—Le microphone peut non-seulement transmettre la parole, mais il peut encore dans certaines conditions la reproduire et être substitué par conséquent au téléphone récepteur. Cette fois c'est à n'y rien comprendre, car c'est seulement dans des variations d'intensité de courant qu'il faut chercher une cause du mouvement vibratoire produit dans l'une des parties du circuit lui-même, et il n'y a plus alors à invoquer des effets d'attraction et d'aimantation. Est-ce aux répulsions qu'exercent entre eux les éléments contigus d'un même courant qu'il faut rapporter cette action? Ou bien faut-il la considérer comme étant de la même nature que celle qui fait émettre des sons à un fil de fer lorsqu'il est traversé par un courant interrompu? un courant électrique est-il lui-même un mouvement vibratoire, comme l'admet M. Hughes? Voilà des questions auxquelles il est bien difficile de répondre dans l'état actuel de la science; toujours est-il que le fait existe, et ce sont MM. Hughes, Blyth et Robert, H. Courtenay et même M. Edison, qui, chacun de leur côté, viennent de le faire connaître; moi-même j'ai pu le vérifier dans les conditions expérimentales indiquées par M. Hughes, mais je n'ai pas été aussi heureux quand j'ai voulu répéter les expériences de M. Blyth. Suivant ce savant il suffirait, pour entendre la parole dans le microphone, d'employer le modèle à fragments de charbon dont nous avons parlé précédemment, d'y joindre comme appareil transmetteur un second microphone du même genre, et d'introduire dans le circuit une pile de deux éléments de Grove. Alors si on parle au-dessus des charbons de l'un des microphones, on devrait entendre distinctement la parole en approchant l'oreille du second, et l'importance des sons ainsi reproduits serait en rapport avec l'intensité de la source électrique employée. Toutefois, comme je le disais, je n'ai pu, en m'y prenant de cette manière, entendre aucun son et encore moins la parole, et si d'autres expériences ne m'avaient pas convaincu, j'aurais douté de l'authenticité du fait annoncé. Mais cette expérience négative ne prouve en définitif rien, car il est possible que je me sois placé dans de mauvaises conditions, et que les escarbilles que j'employais ne fussent pas dans les mêmes conditions que les cinders gas de M. Blyth.

Quant aux expériences de M. Hughes, je les ai répétées avec le microphone de MM. Chardin et Berjot, relié avec celui de M. Gaiffe employé comme transmetteur, et j'ai reconnu qu'avec une pile de quatre éléments Leclanché, seulement, tous les grattements effectués sur le microphone de M. Gaiffe et même les trépidations et les airs résultant du jeu d'une petite boîte à musique placée sur cet appareil, étaient reproduits, très-faiblement il est vrai, dans le second microphone; pour les percevoir il suffisait de coller l'oreille contre la planchette verticale. La parole n'était pas reproduite il est vrai, mais M. Hughes m'en avait prévenu; l'appareil ainsi disposé n'était pas évidemment assez sensible.

Fig. 42.

Pour reproduire la parole par ce système et pour la transmettre, il faut une autre disposition du microphone, et celle qui a donné les meilleurs résultats à M. Hughes est représentée, vue en coupe, figure 42. C'est un peu le microphone parleur de M. Hughes, disposé verticalement et dont le charbon fixe est collé au centre de la membrane tendue d'un téléphone à ficelle. Le cornet de ce téléphone est représenté en A, la membrane en DD, et le charbon en question en C; ce charbon est en sapin carbonisé et métallisé ainsi que le double charbon E qui est en contact avec lui et qui est adapté à l'extrémité supérieure de la bascule GI. Le tout est renfermé dans une petite boîte, et on règle la pression exercée au contact des deux charbons au moyen d'un ressort antagoniste R et d'une vis H. C'est alors le cornet du téléphone qui sert de cornet acoustique, et c'est le parleur de M. Hughes décrit page 169 qui sert de transmetteur pour entendre. Inutile de dire que deux appareils de ce genre sont placés aux deux bouts du circuit, que les charbons sont reliés aux deux pôles d'une pile de deux éléments à bichromate de potasse ou de Bunsen ou de six éléments de Leclanché, et que les deux appareils sont reliés par le fil de ligne.

Dans ces conditions, une conversation peut être échangée, mais les sons sont toujours beaucoup moins accentués que dans le téléphone.

J'ai pu constater ce fait avec un appareil grossier apporté d'Angleterre par M. Hughes. MM. Berjot, Chardin et de Méritens qui étaient présents aux expériences, ont pu comme moi parfaitement entendre la parole, et j'ai depuis répété moi-même l'expérience avec succès; mais elle ne réussit pas toujours et, dans ses conditions actuelles, l'appareil ne présente d'importance qu'au point de vue scientifique. On le construit chez MM. Chardin et Berjot.

On comprend facilement que l'appareil peut se passer de support, et la petite boîte forme alors le manche de l'instrument; les deux boutons d'attache sont disposés dans ce cas au bout de ce manche, comme dans un téléphone.

Les effets du microphone récepteur expliquent les sons souvent très-intenses déterminés par les bougies Jablochkoff quand elles sont actionnées par des machines magnéto-électriques. Ces sons vibrent toujours à l'unisson de ceux émis par la machine elle-même, et ceux-ci proviennent, comme je l'ai déjà démontré, des aimantations et des désaimantations rapides des organes magnétiques qui sont mis en jeu par cette machine. Ces effets, remarqués par M. Marcel Deprez, étaient particulièrement caractérisés avec les premières machines de M. de Méritens.

Autres dispositions de microphones.—Une disposition du genre de celle que nous venons de décrire a été employée par M. Carette pour constituer un parleur microphone extrêmement énergique; seulement au lieu d'une membrane tendue, il emploie une plaque métallique mince; il colle l'un des charbons au centre de cette plaque et adapte devant lui l'autre charbon qui est taillé en pointe et porté par un système de porte-charbon à vis de réglage au moyen duquel on peut régler comme on le veut la pression exercée entre les deux charbons. Avec cette disposition, la parole peut être entendue à distance du téléphone récepteur. Elle est, du reste, analogue à celle du transmetteur téléphonique de M. Edison.

En exécutant dans de grandes dimensions le système représenté, fig. 42, et formant le cornet AB avec un grand entonnoir en zinc de près de un mètre de longueur, M. de Méritens a pu parvenir à amplifier assez les sons de la parole pour qu'une conversation faite à voix basse à trois ou quatre mètres de cet instrument, ait été reproduite dans un téléphone d'une manière plus sonore et plus distincte. L'appareil était placé sur le plancher de l'appartement, l'ouverture de l'entonnoir en haut, et le téléphone était dans les caves de la maison.

On a du reste varié de mille manières la forme du microphone suivant les applications auxquelles on veut l'appliquer. C'est ainsi que nous voyons dans l'English Mechanic and World of Science, du 28 juin 1878, les dessins de plusieurs dispositions dont l'une est spécialement applicable à l'audition des pas d'une mouche; c'est une boîte à la partie supérieure de laquelle est tendue une feuille de papier végétal; deux charbons séparés par un petit morceau de bois et mis en rapport avec les deux fils du circuit y sont collés, et un troisième charbon allongé, placé en croix sur les deux autres, se trouve maintenu dans cette position par une rainure pratiquée dans ceux-ci. Une pile très-faible suffit pour faire fonctionner cet appareil, et la mouche se promenant sur la feuille de papier détermine des vibrations assez fortes pour faire réagir énergiquement un téléphone ordinaire. Il faut alors recouvrir l'appareil d'un globe de verre. En plaçant une montre sur la membrane et en ayant soin d'appuyer son bouton sur le morceau de bois séparant les deux charbons, le bruit de ses battements peut être entendu dans toute une salle. On peut encore, au lieu de l'arrangement de charbons décrit plus haut, employer deux cubes de charbon juxtaposés et séparés seulement par une carte à jouer. Une cavité semi-sphérique pratiquée à la partie supérieure de cette masse entre les deux charbons et dans laquelle on place quelques petites boules de charbon d'une grosseur intermédiaire entre celle d'un pois et celle d'une graine de moutarde, permet d'obtenir des contacts multiples excessivement mobiles et éminemment propres à des transmissions téléphoniques. Ces dispositions ont été combinées par M. T. Cuttriss.

Il est encore beaucoup d'autres dispositions de microphones imaginées par différents constructeurs et inventeurs qui donnent des résultats plus ou moins satisfaisants, telles sont celles de MM. Varey, Trouvé, Vercker, de Combettes, Loiseau, etc., etc., mais comme elles se rapprochent plus ou moins des types que nous avons déjà décrits, nous n'en parlerons pas davantage.

Expériences faites avec le microphone.—Il me reste maintenant à indiquer les expériences intéressantes qui ont conduit M. Hughes à l'instrument remarquable dont nous venons de parler, et celles qui ont été entreprises par d'autres savants, soit au point de vue scientifique, soit au point de vue pratique.

Considérant que la lumière et la chaleur peuvent modifier la conductibilité électrique des corps, M. Hughes s'est demandé si des vibrations sonores transmises à un conducteur traversé par un courant ne modifieraient pas aussi cette conductibilité en provoquant des contractions et des dilatations des molécules conductrices, qui équivaudraient à des raccourcissements ou à des allongements du conducteur ainsi impressionné. Si cette propriété existait réellement, elle devrait permettre de transmettre les sons à distance, car de ces variations de conductibilité devaient résulter des variations proportionnelles de l'intensité d'un courant agissant sur un téléphone. L'expérience qu'il fit sur un fil métallique tendu n'a pas répondu toutefois à son attente, et ce n'est que quand le fil dut vibrer assez fortement pour se rompre, qu'il entendit un son au moment de la rupture. En rejoignant les deux bouts du fil, un son se produisit encore, et il reconnut bientôt que pour en obtenir, il suffisait d'un contact imparfait entre les deux bouts disjoints du fil. Il devint dès lors manifeste, pour M. Hughes, que les effets qu'il prévoyait ne pouvaient se produire qu'avec un conducteur divisé, et par suite de contacts imparfaits.

Il rechercha alors quel était le degré de pression le plus convenable à exercer entre les deux bouts rapprochés du fil pour obtenir le maximum d'effet, et pour cela il effectua cette pression à l'aide de poids. Il reconnut que, quand elle était légère et qu'elle ne dépassait pas celle d'une once par pouce carré, au point de jonction, les sons étaient reproduits distinctement, mais d'une manière un peu imparfaite; en modifiant les conditions de l'expérience, il put s'assurer bientôt qu'il n'était pas nécessaire, pour obtenir ce résultat, que les fils fussent réunis bout à bout, et qu'ils pouvaient être placés côte à côte sur une planche ou même séparés (mais avec addition d'un conducteur posé en croix sur eux), pourvu que les métaux en contact fussent du fer et qu'une pression légère et constante pût les réunir métalliquement. L'expérience fut faite avec trois pointes de Paris disposées comme on le voit fig. 43, et elle a été répétée depuis, dans de meilleures conditions par M. Willoughby-Smith, avec trois limes dites queues-de-rat qui permirent de transmettre le bruit d'une faible respiration[23].

Chargement de la publicité...