← Retour

Les grands froids

16px
100%
Effets de la glace sur les essences forestières les plus résistantes. (1879–1880.)

Le récit suivant, de M. le marquis de Cherville, montre, au début, l'exagération qui suivit la grande période des froids; sa fin fait naître des espérances qui devaient en grande partie se réaliser; elle fait espérer une résurrection qui s'est, en effet, produite pour beaucoup d'arbres.

«Comme nous l'avions prévu, dit-il, les effets des gelées furieuses du mois de décembre ont été désastreux pour les végétaux tant utiles que d'agrément. Il est facile de découvrir ce qui a été atteint par le gel; c'est ce qui a été épargné qui se rencontre avec le plus de difficulté: les noyers, les châtaigniers des forêts, les jeunes ormes et érables des pépinières, sont atteints comme les conifères exotiques, comme les arbrisseaux à feuillage persistant; les rosiers à tige, c'est-à-dire greffés sur églantier, ont été presque universellement détruits; seuls les rosiers francs de pied, protégés par la neige, ont été épargnés; c'est ainsi qu'on voit survivre de délicats bengales aux hybrides les plus robustes. C'est en ce qui concerne les arbres fruitiers que les pertes prennent des proportions vraiment graves. Ils ont été frappés par le gel, aussi bien dans les jardins que dans la campagne; poiriers, cerisiers, abricotiers, pêchers, ont au moins du plomb dans l'aile; nous avons vu des poiriers gros comme la cuisse d'un homme, dont le cœur était aussi sec que si l'arbre était mort depuis un an.

»Contre l'opinion générale, c'est bien moins à l'intensité du froid qu'à sa précocité qu'il faut attribuer le phénomène. L'année ayant été exceptionnellement tardive, la sève n'avait pas complété son mouvement de retraite lorsque la gelée est survenue: beaucoup d'arbres avaient encore des feuilles. De gros poiriers, transplantés avant la baisse du thermomètre, n'ont nullement souffert au milieu d'autres qui sont perdus, uniquement parce qu'en les déplantant on avait précipité le retour de la sève dans les racines. Le mouvement de cette sève aura-t-il la puissance de ramener la vitalité de ces précieux végétaux? Cela nous paraît probable, au moins pour quelques-uns: aussi engageons-nous les intéressés à ne point condamner hâtivement tel ou tel arbre qui leur semble sec, et à attendre le mois de juin avant de désespérer de sa résurrection. Ils auront tout à y gagner, rien à y perdre.»

Nous avons donc à enregistrer beaucoup de pertes, mais aussi beaucoup de résurrections. Dans plusieurs régions, notamment en Champagne et en Bourgogne, les vignes ont été fortement éprouvées: généralement les racines ne sont pas mortes, mais un tiers au moins des pieds ne porteront pas de fruits de deux ans. Le phylloxéra continuant à éprouver le Midi, tandis que la gelée a fortement attaqué le Nord, nous devons nous attendre à avoir, en 1880, une récolte de vin peut-être plus mince encore que les si tristes récoltes des années précédentes. Dans la Sologne, d'immenses plantations de sapins et de pins ont été littéralement grillées, tous les bourgeons sont devenus noirs, et les sommets des branches entièrement roux. On est obligé de tout abattre. Plusieurs propriétaires sont complètement ruinés.

Dans le Midi, beaucoup d'oliviers et de figuiers sont morts jusqu'à la racine.

Quant aux plantes exotiques, les stations voisines de la mer, les plus favorisées, ont pu seules en conserver. Au Jardin des plantes de Paris, le spectacle est navrant: presque tout sera à remplacer.

La perte est donc immense, et peut-être l'horticulture n'a-t-elle jamais subi, en France, des désastres comparables à ceux que lui a infligés le mois de décembre 1879.

Mais nous n'avons pas à craindre la famine, la récolte des blés étant sauvée. Du reste, les famines sont passées pour ne plus revenir. Depuis 1709, la civilisation a marché à grands pas, renversant les barrières et rapprochant les peuples: ce que les uns ne récoltent pas, d'autres le fournissent, et les denrées, toujours en quantités suffisantes, demeurent à la portée de tous. Aux réquisitions du dix-huitième siècle ont succédé les approvisionnements venus des pays voisins. La machine à vapeur a tué la famine; la civilisation a chassé la misère. Nous ne saurions mieux montrer son rôle qu'en reproduisant les lignes éloquentes écrites par M. Hirsch, dans sa préface de l'Histoire de la machine à vapeur, de Thurston;

«Tandis que les partis montent au pouvoir et en descendent, que les gouvernements se liguent ou se séparent, que les traités se font ou se défont, que les armées battent ou sont battues, l'humanité reste immobile et ne tire pas le moindre profit de ce jeu d'escarpolette; et de tout ce mouvement stérile, ce qui ressort de plus clair, ce sont de grandes dépenses d'argent et de forces vives matérielles ou intellectuelles; ce sont les guerres, dont notre siècle a donné de si nombreux et si épouvantables exemples; c'est le sang qui coule à torrents; ce sont les larmes, les ruines, la famine et le typhus.

»Au milieu de cette agitation violente et funeste, quelques travailleurs, retirés au fond de leur cabinet, s'attachent opiniâtres à leur modeste besogne de fourmi; ils alignent, jour par jour, les chiffres et les formules; s'acharnent après un boulon ou un clapet; tracent des épures, les effacent, les recommencent, remettent vingt fois l'ouvrage sur le métier, s'obstinent en dépit des déboires, et souvent, hélas! se ruinent et meurent à la peine. Sous l'effort continu de leur labeur ingrat, le progrès se fait lentement, mais sans relâche; le bien-être se répand petit à petit et gagne les couches les plus profondes de la société; la terre livre un à un ses trésors; les produits s'échangent d'un climat à l'autre; les haines de province à province et de peuple à peuple s'émoussent; la famine disparaît, et la misère est vaincue.»

LIVRE V
LES GRANDS FROIDS ET LES CLIMATS

CHAPITRE PREMIER
LES CAUSES DU FROID.

Il nous reste à expliquer les différences énormes de température que l'on observe quand on va de l'équateur au pôle, ou qui se produisent, en un lieu déterminé, d'une saison à l'autre. Trois causes, que nous examinerons successivement, tendent à faire varier constamment la température de la surface de la terre.

Et d'abord, la terre possède, sous la croûte solide que nous connaissons, une immense masse fluide ou plutôt peut-être d'énormes amas d'une matière liquéfiée, disséminés en diverses régions, et séparés les uns des autres par des parties solides. Quelles que soient la disposition, la grandeur et la température de ce feu central, il tend constamment à réchauffer la surface de la terre, de même que l'eau chaude que l'on verse dans un vase de porcelaine en échauffe l'extérieur. Mais pour la terre l'épaisseur de la croûte est considérable; les substances qui la constituent sont fort peu conductrices, et par suite la chaleur qui arrive à la traverser est bien petite: elle se perd au fur et à mesure par rayonnement. Le calcul mathématique a permis de démontrer que le feu central élève à peine la température de la surface de 1/36e de degré. Nous n'avons donc pas à tenir compte de cette première cause, dont l'influence est absolument négligeable; si la terre venait subitement à être refroidie jusqu'à son centre, il n'en résulterait, pour la surface extérieure, aucun refroidissement sensible. Toutes les variations sont dues à la lutte constante qui se produit entre l'action du soleil, qui nous échauffe, et l'action du rayonnement extérieur, qui nous refroidit.

Un corps chaud, comme un boulet de canon rougi au feu, envoie autour de lui, quand on le sort du foyer, une quantité considérable de chaleur. Il se refroidit peu à peu jusqu'à ce que sa température soit devenue égale à celle de l'air qui l'environne. L'intensité de ce rayonnement dépend de la grosseur du boulet, de sa température primitive, et aussi de l'état physique de sa surface. Si la surface est formée d'un métal poli, le rayonnement sera faible, le refroidissement sera lent; on dit que le métal poli a un faible pouvoir émissif. Si la surface est formée d'une substance mate et dépolie, de noir de fumée ou de blanc de plomb, le rayonnement sera intense, le refroidissement bien plus rapide.

Enfin, la vitesse du refroidissement dépend de la substance même qui constitue la boule chaude. Que cette substance conduise bien la chaleur, à la manière des métaux, le rayonnement sera intense; à mesure que la surface extérieure sera refroidie, la chaleur viendra du centre pour compenser la perte et se répandre à son tour dans l'espace. Si, de plus, la boule métallique est recouverte d'une couche ayant un grand pouvoir rayonnant, noir de fumée ou blanc de plomb, elle sera bientôt, dans toute sa masse, à la température de l'air; elle cessera de rayonner de la chaleur sensible au thermomètre. Mais si notre enduit de noir de fumée recouvrait une sphère chaude formée d'une substance peu conductrice, de bois par exemple, il en serait tout autrement. Au début, le rayonnement serait rapide; mais, la chaleur se transportant mal à travers le bois, la surface se refroidirait presque seule, le centre restant chaud. Il y aurait bientôt, de l'extérieur à l'intérieur, une différence de température considérable; le refroidissement total serait très lent à se produire.

C'est ce qui arrive pour la terre. Abandonnée dans l'espace, elle rayonne de la chaleur constamment autour d'elle, et l'extérieur se refroidit considérablement par rapport à l'intérieur qui reste chaud. Si aucune cause de réchauffement ne venait compenser l'action du rayonnement, la surface de la terre serait bientôt en tous ses points à la température des espaces planétaires, tandis que son centre resterait sensiblement comme il est aujourd'hui. Le froid des espaces planétaires n'est pas exactement connu, et il ne saurait l'être par une expérience directe, puisqu'il nous est impossible de pénétrer dans ces régions vides d'air; mais ce froid est extrême. Fourier l'évalue à −70 degrés, M. Pouillet à −140 degrés. Le second nombre est bien certainement plus près de la réalité que le premier. Le rayonnement de la surface de la terre joue un rôle énorme dans la physique du globe; c'est grâce à lui que se forment la rosée, la gelée blanche; c'est aussi lui qui est la cause des ravages produits par les gelées tardives du printemps.

Toute cause capable de diminuer le rayonnement arrêtera ou diminuera la formation de la rosée, de la gelée blanche, diminuera les chances des gelées tardives. Les nuages, par exemple, placés entre la terre et le ciel, arrêtent la chaleur rayonnée par le sol, la conservent dans le voisinage de la terre, et empêchent l'abaissement de la température d'être aussi rapide. Par un temps couvert, il ne se forme pas de rosée, il n'y a pas de gelées tardives. Les nuits les plus sereines sont toujours les plus froides. De là la pratique souvent employée par les horticulteurs et les viticulteurs pour préserver leurs plantes du gel au printemps. Les premiers les recouvrent de paillassons, qui constituent un manteau suffisant contre le rayonnement. Les seconds, pendant les matinées de mai où la gelée est à craindre, font brûler de la paille humide et des substances goudronneuses dans leurs vignes, et les recouvrent ainsi d'un nuage artificiel de fumée. Ce moyen, du reste, n'est pas nouveau, et M. Daguin rapporte que, d'après Garcilasso de Vega, les Péruviens, quand ils voyaient le temps très clair, brûlaient du fumier pour dégager une épaisse fumée et former un nuage artificiel qui préservait d'un froid trop vif les pousses des jeunes plantes.

Dans les pays chauds, où le temps est le plus souvent clair, le rayonnement nocturne suffit pour déterminer la formation de la glace, quoique la température de l'air reste bien supérieure à zéro degré. Au Bengale, il existe des fabriques de glace artificielle qui occupent plusieurs centaines d'ouvriers. «On creuse des fossés, dit M. Tyndall, que l'on remplit en partie de paille, et sur la paille on expose au ciel pur des bassins plats contenant de l'eau que l'on a fait bouillir. L'eau a un grand pouvoir de radiation; elle envoie en abondance sa chaleur dans l'espace, et la chaleur ainsi perdue ne peut pas être remplacée par la chaleur de la terre, que la paille non conductrice arrête au passage. Le soleil n'est pas levé que déjà la glace s'est formée dans chaque vase.» Même sous le ciel brumeux de l'Angleterre, Wells, qui le premier a compris les effets du rayonnement nocturne, est parvenu à faire en été de la glace par le même moyen; mais il fallait une nuit exceptionnelle. On a tenté à Saint-Ouen, près de Paris, de fabriquer industriellement de la glace de la même manière, mais on a dû y renoncer; les nuits assez sereines sont trop rares dans nos climats.

Il ne suffit pas, pour que le rayonnement nocturne soit très intense, que le ciel soit sans nuages; il faut, de plus, que l'air soit sec, privé autant que possible de vapeur d'eau à l'état invisible. Cela résulte clairement de la remarque suivante de sir Robert Barker: «Les nuits les plus favorables à la production de la glace sont celles qui sont les plus claires, les plus sereines, et pendant lesquelles il apparaît très peu de rosée après minuit.» Et pour que, par une nuit très claire, il ne se forme pas de rosée, il faut que l'air soit remarquablement sec.

C'est qu'en effet l'eau à l'état liquide, telle qu'elle se trouve dans les nuages, n'a pas seule la propriété d'empêcher le rayonnement nocturne. M. Tyndall a montré que l'eau en vapeur transparente, toujours répandue dans l'air en assez grande quantité, jouit de la même propriété. Comme l'eau des nuages, elle arrête une partie des rayons du soleil pendant le jour; comme l'eau des nuages, elle conserve une partie de la chaleur de la terre pendant la nuit. La vapeur d'eau absorbe la chaleur en grande quantité, qu'elle vienne du soleil ou de la terre, tandis que l'air sec la laisse passer entièrement sans l'absorber. Elle joue dans l'atmosphère le rôle d'un manteau qui vous préserve à la fois du chaud et du froid, et ce n'est pas là le moindre de ses bienfaits; sans elle, nos jours d'été seraient beaucoup plus chauds et nos nuits bien plus froides. Elle nous rend ainsi les plus grands services, et nous serions mal inspirés si nous lui appliquions le mot de la fable:

Arrière ceux dont la bouche
Souffle le chaud et le froid.

«La vapeur aqueuse, dit M. Tyndall, est une couverture plus nécessaire à la vie végétale de l'Angleterre que les vêtements ne le sont à l'homme. Otez pendant une seule nuit la vapeur aqueuse contenue dans l'air qui environne notre pays, et vous détruirez certainement toutes les plantes qui peuvent être détruites par la gelée. La chaleur de nos champs et de nos jardins se répandra sans retour dans l'espace, et lorsque le soleil viendra à paraître sur notre île, il la trouvera en proie à un froid rigoureux. La vapeur aqueuse est une écluse locale qui emmagasine la température de la surface de la terre.»

Dans les pays où la sécheresse est grande, il y a souvent entre la température du jour et celle de la nuit une énorme différence. Le docteur Livingstone, dans le sud de l'Afrique centrale, observait sous sa tente, au milieu du jour, une température de +35 degrés, et le matin une température de +5 degrés seulement. A l'air libre, la différence aurait été certainement beaucoup plus grande. Dans cet été africain, si brûlant, les habitants de Balonde font du feu jusqu'à 9 heures du matin. Quand Livingstone arriva sur les bords de la rivière de Zambesi, là où l'atmosphère est humide, il vit aussitôt le climat changer totalement; les nuits étaient, là, presque aussi chaudes que les jours. Dans le centre de l'Australie, la température varie quelquefois, du matin au soir, depuis −12 degrés jusqu'à +20 degrés.

Dans l'Europe centrale, il se produit des faits analogues, dus à la sécheresse de l'air. Les paysans hongrois, quand ils ont une nuit à passer dehors, ont soin, même en été, de se munir de bons vêtements contre le froid.

Nous connaissons maintenant la cause du refroidissement du sol; voyons comment le soleil lutte contre ce refroidissement. Le soleil envoie constamment sur la terre de la chaleur et de la lumière. M. Pouillet a montré que la quantité de chaleur qui nous arrive ainsi serait suffisante, si elle était répartie uniformément sur le globe, pour fondre en un an une couche de glace qui le recouvrirait complètement, et qui aurait 30 mètres d'épaisseur. Mais cette chaleur n'est pas répandue uniformément, et, de plus, elle n'arrive pas toute jusqu'au sol.

Voyons ce qui se produit en deux points aussi éloignés l'un de l'autre que possible, à l'équateur et au pôle. Les rayons solaires arrivent sur l'équateur dans une direction normale à celle du sol; mais à mesure que la région considérée s'éloigne de l'équateur, elle reçoit des rayons de plus en plus obliques, et par conséquent de moins en moins nombreux pour une étendue donnée. De plus, grâce à cette obliquité, la chaleur du soleil est réfléchie en bien plus grande quantité vers les pôles que dans le voisinage de l'équateur, et par là l'intensité de l'action du soleil est encore diminuée. Enfin la figure montre que les rayons solaires doivent, pour arriver au pôle, traverser une épaisseur d'atmosphère bien plus considérable que pour arriver à l'équateur. Or, nous avons vu que l'air, grâce surtout à la vapeur d'eau qu'il contient, arrête une très notable proportion de la chaleur du soleil; les rayons qui arrivent au pôle seront donc moins chauds que ceux qui parviennent à l'équateur. Le froid du pôle se trouve ainsi expliqué.

Des considérations différentes nous permettront de nous rendre compte de la différence considérable de température que l'on observe à la base et au sommet des montagnes élevées. L'air humide absorbe sans doute la chaleur du soleil, mais en faible proportion; l'action qu'il produit n'est sensible qu'à cause de la formidable épaisseur d'air qui nous entoure; mais chaque portion ne s'échauffe pour ainsi dire pas par suite de cette faible absorption. C'est le sol qui s'échauffe et qui, par contact direct, échauffe l'air. L'air chaud, devenant plus léger, s'élève pour être remplacé au niveau du sol par de l'air froid qui vient se chauffer à son tour. Il en résulte, dans le voisinage immédiat de la terre, un mouvement continuel de convection qui est bien visible au-dessus des prairies et surtout des sables directement chauffés par le soleil.

Mais cet air chaud qui monte se refroidit peu à peu par rayonnement et par le fait même de sa dilatation: aussi, à mesure qu'on s'éloigne du niveau de la mer, il a une température de moins en moins élevée. C'est ce qui explique pourquoi, au sommet des montagnes, par un soleil plus chaud que celui des plaines, on a une atmosphère glacée.

Enfin, dans un lieu déterminé, la succession périodique des saisons s'expliquera par des considérations analogues. Si le mouvement apparent du soleil se produisait dans le plan même de l'équateur, les jours par toute la terre seraient constamment égaux aux nuits, la température serait sensiblement la même pendant toute la durée de l'année. Mais, à cause de l'obliquité du plan de l'écliptique, cette égalité n'a lieu que pour les points situés sur l'équateur. A mesure que l'on s'éloigne de l'équateur pour s'approcher des pôles, l'inégalité des jours et des nuits devient de plus en plus grande. En été, c'est-à-dire à l'époque où les jours sont plus grands que les nuits, la quantité de chaleur est beaucoup plus considérable qu'en hiver, où les jours sont plus petits que les nuits. A partir de la latitude de 66 degrés et demi, il y a en chaque point une nuit de plus de 24 heures en hiver, un jour de plus de 24 heures en été. Au pôle même on n'a qu'un seul jour et qu'une seule nuit, chacun de six mois.

Pendant cette longue nuit des régions polaires, le rayonnement terrestre agit seul, sans compensation, et la température s'abaisse considérablement. Les heures ne se distinguent plus les unes des autres par l'éclat du ciel ni par son obscurité, ni non plus par des différences de température. Tandis que chez nous les heures du jour sont en moyenne beaucoup plus chaudes que celles de la nuit, dans ces régions sans soleil les perturbations atmosphériques font seules varier la température.

A Bossekop, par 70 degrés de latitude, MM. Bravais et Martins ont régulièrement observé la température pendant toute la durée d'une longue nuit de presque trois mois. Les moyennes de température qu'ils ont obtenues ont été sensiblement les mêmes pour toutes les heures.

Midi−9°.12
2 heures−9.05
4 —−9.28
6 —−9.31
8 —−9.22
10 —−9.07
Minuit−9°.09
2 heures−9.25
4 —−9.21
6 —−9.22
8 —−9.09
10 —−8.94

Mais quand arrive le soleil, et qu'il reste pendant plusieurs mois au-dessus de l'horizon, malgré la grande obliquité de ses rayons, l'air s'échauffe et la température devient parfois très élevée. De là une énorme différence entre la température moyenne de l'hiver et celle de l'été. En maints endroits de la Sibérie, à des hivers où le mercure se congèle naturellement, succèdent des étés qui en six semaines font mûrir d'abondantes récoltes, et pendant lesquels les habitants peuvent aller nus. Tandis qu'à Paris la différence entre la température moyenne de l'été et celle de l'hiver n'atteint pas 15 degrés, elle est de 27 degrés à Saint-Pétersbourg.

CHAPITRE II
LES DIVERS CLIMATS.

Les différences de distribution de la chaleur à la surface du globe ont permis de diviser la terre en grandes régions de plus en plus froides à mesure qu'on s'approche davantage du pôle. La zone torride, située de part et d'autre de l'équateur, est caractérisée par l'absence presque complète d'hiver; elle s'arrête aux tropiques. Les zones tempérées, dans chacun des deux hémisphères, sont comprises entre les tropiques et les cercles polaires; l'Europe entière se trouve dans la zone tempérée boréale. Enfin, les zones glaciales s'étendent depuis les cercles polaires jusqu'aux pôles.

Les limites des zones sont donc uniquement déterminées par le mouvement du soleil par rapport à la terre; mais il ne faudrait pas croire que la distribution de la chaleur à la surface du globe soit aussi régulière que ces subdivisions semblent l'indiquer. La température d'un lieu dépend d'une foule de circonstances que l'on peut diviser, comme l'a fait de Humboldt, en causes générales et causes particulières. Ces causes sont tellement multiples qu'il est impossible de tenir compte de leur influence respective et de déterminer à priori quel doit être le climat d'une région au point de vue de la température.

Les causes particulières sont: l'inégalité des terrains, la direction des chaînes de montagnes, la forme et la masse des terres, les variations barométriques; toutes ces causes déterminent ou modifient la direction des vents, que M. Martins a appelés avec tant de raison les grands arbitres des changements atmosphériques. Il faut ajouter encore l'état de la surface terrestre, selon qu'elle est dénudée ou couverte de végétation, les changements résultant de la culture, la quantité de neige qui couvre les terres en hiver.

Les causes générales sont: la latitude et l'altitude, dont nous avons parlé, et la position relative, à latitude égale, des continents et des mers. C'est de cette troisième cause générale que nous devons dire quelques mots.

Lorsque le soleil darde ses rayons sur l'eau de la mer, elle s'échauffe fort lentement; il est facile d'en comprendre la raison. D'abord, l'atmosphère qui se trouve au-dessus de l'Océan renferme une grande quantité de vapeur d'eau qui arrête une notable proportion de la chaleur. De plus, l'eau a besoin, pour s'échauffer, d'une quantité considérable de chaleur: un kilogramme d'eau s'échauffera beaucoup moins rapidement qu'un kilogramme de bois ou de terre soumis au rayonnement du même foyer de chaleur; on exprime ce fait en disant que l'eau a une grande chaleur spécifique. La surface de la mer, en la supposant immobile, s'échauffera donc beaucoup moins vite que la surface du sol. Mais elle n'est pas immobile: à cause de l'action des vents, du mouvement des marées, elle est constamment agitée; ses diverses couches sont mélangées incessamment, de sorte que l'eau s'échauffe presque dans toute sa masse, tandis que la terre des continents ne s'échauffe qu'à la surface. Aussi, tandis qu'on a vu la température de l'air au-dessus du sable brûlant des déserts s'élever au-dessus de +60 degrés, jamais, même à l'équateur, la température à la surface de la mer n'a dépassé +31 degrés.

En hiver, le phénomène est inverse. La terre, qui n'était échauffée qu'à sa surface, se trouve bientôt refroidie. La mer, au contraire, a emmagasiné jusque dans ses profondeurs une provision de chaleur d'autant plus grande que la chaleur spécifique de l'eau est plus considérable; de plus, elle est recouverte d'un manteau de vapeur d'eau, qui empêche en partie le rayonnement; le refroidissement sera lent. La mer est donc moins chaude en été, moins froide en hiver; elle a un climat plus constant. Les terres placées dans son voisinage participent à cette égalisation; elles ont le climat marin, en opposition avec le climat continental, qui présente de plus grandes variations de température.

Le docteur Forel a calculé la quantité de chaleur fournie par le lac Léman en cinq jours: le 19 décembre 1879, la température du lac à sa surface était de 5°.6; le 24, cette température n'était plus que de 5°.4, refroidissement qui semble insignifiant. Et cependant: «Je suis parti de là, dit le docteur Forel, pour calculer quelle était la quantité de chaleur qui avait été perdue par le lac dans ces cinq jours, et je l'ai trouvée égale à environ dix milliards de calories, soit à la quantité de chaleur dégagée par la combustion de 1 250 000 tonnes de charbon, ou par la combustion d'un cube de charbon de 100 mètres de côté. Le ciel ayant été pendant ces cinq jours généralement couvert par un voile de nuages, la plus grande partie de cette chaleur est restée dans l'air, et a ainsi contribué à atténuer, pour notre vallée, le froid qui sévissait si cruellement ailleurs.»

Le réchauffement des hivers par le voisinage de la mer n'avait pas échappé aux anciens. Plutarque le mentionne en ces termes très clairs: «En hiver, nous préférons les séjours voisins de la mer, pour fuir la terre à cause de sa froidure.» Horace, dans une épître à Mécène, lui dit: «Quand la neige aura blanchi les plaines d'Albe, le poète que vous aimez descendra vers la mer, ménagera sa santé...»

Aussi, à latitude égale, les climats marins sont beaucoup moins excessifs dans le froid et dans le chaud que les climats continentaux. L'île d'Hyères ne connaît presque ni été ni hiver; elle a un climat marin. «En hiver même, lorsque la nature est engourdie dans le reste de la France, elle est encore belle à Hyères, où, par une illusion dont on ne peut se défendre, on croit en arrivant avoir changé de saison et de climat. C'est l'endroit de la Provence qui plut davantage à Bachaumont et à Chapelle; ils regrettaient que Paris ne fût pas situé sous un si beau climat. C'est avec plaisir, disaient-ils:

Que c'est avec plaisir qu'aux mois
Si fâcheux en France et si froids,
On est contraint de chercher l'ombre
Des orangers qu'en mille endroits
On y voit, sans rang et sans nombre,
Former des forêts et des bois!
Ici, jamais les grands hivers
N'ont pu leur déclarer la guerre.
Cet heureux coin de l'univers
Les a toujours beaux, toujours verts,
Toujours fleuris en pleine terre.»

Beaucoup plus constant encore est le climat des îles Feroë. «Peut-être n'existe-t-il point, dit M. E. Reclus, en dehors de la zone équatoriale, de parages marins où l'écart annuel du froid et du chaud soit moins considérable. Dans l'air, la variation moyenne de l'été à l'hiver dépasse à peine 7 degrés; en plein janvier, sous la même latitude que le Labrador, et tandis qu'il gèle sur maint rivage de la Méditerranée, la température atmosphérique des Fœroers est d'environ +3 degrés. Le ciel des îles est bas et humide, gris de vapeurs ou ruisselant de pluies. Ce n'est pas la chaleur, c'est la lumière qui manque: aussi presque tous les champs sont-ils inclinés au sud, afin de recevoir les rayons du soleil. Les hivers n'ont pas de frimas, mais les étés sont sans chaleur.»

Mais ici l'action pondératrice de la mer est singulièrement augmentée par le vaste courant du Gulf-Stream qui entoure complètement les îles. Maury, dans sa Géographie de la mer, en donne la description la plus poétique: «Il est un fleuve dans l'Océan; dans les plus grandes sécheresses, jamais il ne tarit; dans les plus grandes crues, jamais il ne déborde. Ses rives et son lit sont des couches d'eau froide, entre lesquelles coulent à flots pressés des eaux tièdes et bleues. Nulle part sur le globe il n'existe un courant aussi majestueux. Il est plus rapide que l'Amazone, plus impétueux que le Mississipi; et la masse de ces deux fleuves ne représente pas la millième partie du volume d'eau qu'il déplace.»

Venant des régions équatoriales, où il a pris une grande quantité de chaleur, ce fleuve océanique sort du golfe du Mexique, laisse bientôt l'Amérique pour traverser l'Atlantique, et vient enfin baigner les côtes de l'Irlande, ainsi que la côte nord-ouest de presque toute l'Europe. Il nous amène ainsi une grande quantité de chaleur et réchauffe notablement nos hivers. Si nous ajoutons à cela le courant d'air, l'alizé supérieur, compagnon atmosphérique du Gulf-Stream, qui vient, chargé de chaleur et d'humidité, s'abattre aussi sur nous, nous comprendrons combien notre climat doit se trouver adouci.

L'Angleterre surtout se trouve sur le passage de ces deux courants chauds. «C'est à cet état de choses, dit M. Tyndall, que nous devons et nos champs si verts, et les joues roses de nos jeunes filles.»—«Nulle part, d'après M. Reclus, si ce n'est dans les Fœroërs et sur les côtes de Norvège, qui reçoit le même souffle bienfaisant, le climat réel n'est plus en désaccord avec celui que l'on pourrait calculer par l'éloignement graduel de l'équateur au pôle. En dépit de la marche du soleil, la température moyenne est aussi élevée en Irlande, sous le 52e degré de latitude, qu'aux États-Unis sous le 38e degré, à 1540 kilomètres plus au sud; quant à la température hivernale, elle est plus douce à l'extrémité même de l'Ecosse que dans le nouveau monde, à 20 degrés plus près de l'équateur.»

Si la terre ne tournait pas sur elle-même, les deux courants qui arrivent sur l'Angleterre et aussi un peu sur la France réchaufferaient surtout les côtes d'Amérique, dont la température serait de beaucoup élevée. Aussi les Américains ont-ils raison d'accuser les Anglais de leur voler leur climat. Si le globe, au contraire, tournait un peu plus vite, nous aurions l'adoucissement de climat dont profite l'Angleterre, en conservant, au moins en grande partie, la sérénité du ciel que nous donne notre position plus méridionale. Aussi Babinet aurait-il eu, à en croire un de ses élèves, M. Malapert, l'idée de détourner le Gulf-Stream de sa route par une digue gigantesque placée dans le voisinage des îles du cap Vert. Grâce à cette digue, la presque totalité des eaux chaudes de l'équateur serait venue baigner nos côtes et celles de l'Angleterre, et nous aurait donné un printemps perpétuel. Il est vrai que personne jusqu'à présent n'a pris au sérieux ce projet Babinet-Malapert.

L'influence du voisinage de la mer est montrée en France de la manière la plus évidente par les nombres suivants:

Villes. Températures moyennes de l'été. Températures moyennes de l'hiver. Différences.
Brest 16°.8 7°.1 9°.7
Paris 18.1 3.3 14.8
Lyon 21.1 2.3 18.8

Tout ceci nous montre combien la chaleur est irrégulièrement distribuée sur notre globe. De Humboldt a imaginé, au commencement du siècle, de tracer sur la carte du monde des lignes joignant les uns aux autres les lieux de même température moyenne. La ligne qui relie tous les points de notre hémisphère dont la température moyenne de l'année est 10 degrés, se nomme la ligne isotherme de 10 degrés. On a de même, pour chaque degré de température, des lignes isothermes qui sont comme les parallèles thermiques. Ils sont loin d'avoir la régularité géométrique des parallèles géographiques.

Les lignes qui traversent les régions ayant la même température moyenne d'hiver sont dites isochimènes. Ces lignes se rapprochent de l'équateur quand elles traversent les continents, et s'en éloignent sur l'océan. Nous venons d'en voir la raison. La direction des isochimènes en France est bien frappante; la ligne isochimène de Paris s'abaisse comme le contour de nos côtes maritimes, et va passer par Orléans, Toulouse, Carcassonne, Valence, Nice. La direction générale des courbes isothermes et isochimènes, dans notre hémisphère, semble rendre très probable l'existence de deux pôles de froid dans le voisinage du pôle nord. L'un, d'une température moyenne de −17 degrés, serait au nord de l'Asie, près de la Nouvelle-Sibérie; l'autre, dans l'archipel polaire américain, sa température serait de −19 degrés. Les régions dont le froid est le plus rigoureux seraient donc situées sous des latitudes que l'homme a déjà visitées, et par conséquent se trouve justifié l'espoir de ceux qui ne croient point le pôle proprement dit inabordable.

La distribution irrégulière de la température est encore rendue manifeste quand on considère les températures les plus basses qui aient été observées en divers points du globe; cet examen montre encore clairement l'influence du voisinage de la mer.

TEMPÉRATURE LA PLUS BASSE OBSERVÉE AVANT 1854:
Iles Britanniques−20°.6 (près Londres).
France−31.3 (Pontarlier, 14 décembre 1846).
Hollande et Belgique−24.4 (Malines, janvier 1823).
Danemark, Suède et Norvège−55.0 (Calix).
Russie−43.7 (Moscou, janvier 1836).
Allemagne−35.6 (Brême, décembre 1788).
Italie −17.8 (Turin).

Pour ne parler que de la France, nous voyons que les villes situées sur le bord de la mer n'ont jamais de bien grands froids. Les froids les plus rigoureux observés jusqu'en 1854 avaient été:

Littoral de l'Océan Cherbourg −8.5
Saint-Malo −13.8
Nantes −13.0
La Rochelle −16.0
Intérieur Nancy −26.0
Tours −25.0
Pontarlier −31.3
Lyon −22.9
Littoral de la Méditerranée Montpellier −18.0
Béziers −7.0
Toulon −10.0
Hyères −12.0

Dans le continent américain, à des latitudes qui sont sensiblement celles de la France, les températures sont bien plus basses, et en plusieurs endroits on y a vu le mercure se congeler à l'air libre. En janvier 1835, tandis que la température en France était au-dessus de la moyenne, on avait à Bangor, à Franconia, à Newport, des froids de −40 degrés. Les villes du littoral, Portsmouth, New-York, Washington, étaient moins éprouvées, et le froid n'y dépassait pas −30 degrés.

CHAPITRE III
LES VARIATIONS DE CLIMAT.

Le climat de la France a-t-il varié depuis les temps historiques? les grands hivers sont-ils actuellement plus rudes et plus fréquents, ou bien moins rudes et moins fréquents qu'autrefois? La question n'est pas facile à résoudre avec exactitude. Il est bien certain que le climat actuel n'est pas identique à celui des premiers siècles de notre ère, et tous les savants admettent sa variation; mais il est bien difficile de fixer la valeur de ces variations, plus difficile encore de savoir si les extrêmes de froid et de chaud ont varié dans un sens ou dans l'autre.

Les nombreux exemples que nous avons cités démontrent qu'il y avait en France de grands hivers sous la domination romaine, et qu'il n'a pas cessé d'y en avoir depuis cette époque. Il ne semble pas, autant qu'on peut en juger par des renseignements incomplets, qu'ils aient été à aucune époque sensiblement plus nombreux ou moins nombreux qu'actuellement. Mais il est impossible d'en fixer exactement la rigueur. Cependant l'étude que nous avons faite du dernier grand hiver, celui de 1879, nous a montré d'une manière absolument certaine que cet hiver a été à peu près aussi rigoureux que tous ceux dont nous parle l'histoire. Tous les effets du froid se sont produits dans cette dernière année avec une intensité aussi grande que jamais, et si les conséquences en ont été moins tristes, c'est aux progrès de la civilisation que nous le devons.

Si cela n'avait pas été absolument en dehors du cadre de notre ouvrage, il nous aurait été tout aussi facile de montrer que l'hiver 1877–1878 a été aussi doux qu'aucun des plus doux hivers de l'histoire, que l'été 1879 a été aussi froid que les plus froids.

Il ne semble donc pas que, dans leurs variations extrêmes, les saisons présentent actuellement des caractères différents de ceux qu'elles ont toujours présentés. Et cependant que de protestations n'entendons-nous pas tous les jours! Chaque fois, et cela arrive souvent, qu'un hiver ou qu'un été ne présente pas exactement les caractères qu'on attend de lui, chacun déplore le dérèglement des saisons. Sur ce point, nous savons à quoi nous en tenir, et nous avons vu qu'au moyen âge ce prétendu renversement des saisons se produisait comme maintenant, faisait crier comme maintenant, et s'affirmait souvent par de désastreuses conséquences.

Oui, il y a deux mille ans, il y a mille ans, comme aujourd'hui, on avait des hivers rigoureux succédant à des hivers trop doux; alors, comme maintenant, on voyait quelquefois les arbres se couvrir de fleurs en janvier et la neige tomber en avril. Le printemps oubliait le plus souvent de se montrer à l'heure dite, et l'on passait rapidement, presque sans transition, des frimas de la saison froide aux chaleurs accablantes de l'été. Il en est encore ainsi de nos jours. Sans doute il arrive une fois par hasard aux mois d'avril et de mai de nous offrir les charmantes douceurs chantées par les poètes; mais que ces printemps délicieux sont rares! qu'ils étaient rares aussi aux époques qui ont précédé la nôtre!

Cessons donc de croire et de dire, à chaque hiver plus rude ou plus doux que la moyenne des hivers, à chaque printemps pluvieux, à chaque été sans soleil, que les saisons sont bouleversées, que rien de semblable n'arrivait autrefois. Les historiens, et, plus récemment, les observations météorologiques précises, sont là pour nous prouver que les saisons n'ont jamais eu un cours plus régulier qu'aujourd'hui.

Ce n'est donc pas dans les variations extrêmes et anormales des saisons qu'il nous faut chercher des preuves de la variation du climat de la France; mais nous pouvons nous demander si la température moyenne normale est demeurée invariable depuis les temps historiques; si, la température moyenne restant la même, l'écart normal de l'été à l'hiver n'est pas devenu plus grand ou plus petit; si notre climat est devenu plus continental ou plus océanique.

Les observations thermométriques directes sont jusqu'à présent impropres à montrer ces variations. Elles ne remontent qu'à deux siècles à peine, et depuis cette époque elles ont été faites dans des conditions si variables, si peu déterminées, qu'elles ne sont pas comparables entre elles, pas même celles faites à l'Observatoire de Paris. Le seul appareil actuel qui soit en état de nous renseigner sur les variations de la température moyenne est le thermomètre de Lavoisier, placé dans la cave la plus profonde de l'Observatoire de Paris, à l'abri des variations diurnes et annuelles; mais ses indications, qui se sont compliquées, à l'origine, des variations dans la position du zéro, ne permettent encore de conclure à aucune modification certaine.

Le climat de l'Angleterre semble au contraire se réchauffer assez rapidement pour que ce soit déjà sensible au thermomètre. D'après M. Glaisher, chargé de la météorologie à l'Observatoire de Greenwich, la température moyenne de Londres se serait accrue d'un degré depuis un siècle; ce réchauffement aurait porté surtout sur les mois d'hiver. Des variations analogues ont été constatées en Allemagne, en Suisse, au Groenland, en Sibérie; ces pays sont devenus plus froids.

Puisque le thermomètre ne nous indique rien pour la France, il nous faut avoir recours à d'autres documents. L'examen des végétaux nous fournira le meilleur. Chaque plante demande, en effet, pour prospérer, une certaine quantité de chaleur, et quand nous verrons les cultures aller vers le nord ou rétrograder du côté du midi, nous serons presque en droit de conclure à un accroissement ou à un abaissement de la température moyenne, ou tout au moins de la température de l'été.

Le docteur Fuster a principalement recueilli, par un immense travail d'érudition, toutes les preuves à l'appui de sa thèse, pour démontrer que des variations continuelles se sont produites dans le climat de la France. Suivons rapidement le docteur Fuster dans ses recherches depuis l'origine des temps historiques de notre pays.

D'après César, Diodore de Sicile, Strabon, Tite-Live, Sénèque, Pline, Plutarque, le climat de la Gaule était froid et humide. Les hivers étaient longs et rigoureux, les étés courts et pluvieux. L'olivier, le figuier, la vigne même, ne pouvaient porter de fruits, et les Gaulois, fort avides cependant du vin que leur sol était impropre à produire, étaient réduits à le remplacer par la bière. La Gaule Narbonnaise seule était presque aussi favorisée que l'Italie. Mais à partir du sixième siècle de notre ère, le climat semble être devenu plus clément, et l'amélioration est telle que nous voyons au neuvième siècle la vigne cultivée sur tout le territoire. La Bretagne, la Normandie, la Picardie, dans lesquelles le raisin ne mûrit plus, avaient des vignes, et des vignes qui produisaient du vin chaque année. La culture de la vigne s'arrête actuellement dans le département de l'Oise. Dans les régions qui produisent actuellement du vin, les vendanges avaient lieu bien plus tôt que maintenant; les coteaux très élevés, sur lesquels aujourd'hui le raisin n'arrive plus à maturité, avaient des vendanges très régulières.

Cette amélioration du climat dura pendant quelques siècles. Arago rapporte qu'en 1552 les huguenots se retirèrent à Lancié, près Mâcon, et qu'ils y burent du vin muscat du pays. Le raisin muscat ne mûrit pas assez maintenant dans le Mâconnais pour qu'on puisse en faire du vin.

Aujourd'hui, la culture de la vigne, du figuier, de l'olivier, ont opéré de nouveau une retraite vers le sud.

D'après M. de Gasparin, et, plus récemment, d'après M. Reclus, ces changements de climat, conclus de la progression des cultures vers le nord ou vers le sud, ne sont peut-être qu'apparents. «Dans ce mouvement de retraite des végétaux cultivés, dit M. Reclus, comment faire la part du climat et des convenances de l'agriculture? Telle plante qui donnait de médiocres produits sous un ciel inclément n'en était pas moins cultivée quand les communications avec les contrées à climat plus doux étaient rares encore; la facilité moderne des échanges a rendu ces cultures désormais inutiles, et par suite leur domaine s'est rétréci.»

Cette thèse, vraie en général, n'est pas soutenable pour un certain nombre de cas. Il est aisé de démontrer, par exemple, que les vins de la Normandie étaient bons au neuvième siècle. Plus tôt même, en 360, l'empereur Julien faisait servir à sa table du vin de Suresnes, et il le trouvait excellent. Les vins bretons, normands, étaient fort estimés, et par des gens qui jugeaient les vins aussi bien que nous le ferions de nos jours. Les vins de Bordeaux, de Bourgogne, de Champagne, étaient dès le moyen âge considérés comme les meilleurs de France, et les points de comparaison ne manquaient pas. Et cependant les ducs, les rois, les moines même estimaient fort les vins de régions qui aujourd'hui n'en produisent plus.

Mais l'adoucissement du climat ne devait pas durer toujours. Dès le douzième siècle, la détérioration commence; les vignes rétrogradent peu à peu, de même que le figuier et l'olivier. Les vins de Bretagne et de Normandie deviennent mauvais, puis ils disparaissent, et peu à peu le climat prend les caractères que nous lui connaissons aujourd'hui.

Pour tous les auteurs, ces changements de climat ne sont pas aussi considérables, ni aussi certains. Le comte de Villeneuve, de Gasparin, de Candolle, les nient presque complètement; Arago en admet une partie; Fuster cherche à démontrer que le climat de la France a toujours changé, qu'il change actuellement et qu'il changera toujours. «Dans tous les cas, dit M. Reclus, les modifications subies par les climats pendant la période historique n'ont encore qu'une faible importance relative; mais celles qui se sont opérées durant les âges géologiques récents ont suffi pour déplacer les faunes, les flores et les races sur d'immenses étendues. On le sait par les traces qu'ont laissées les anciens glaciers des Alpes, des Pyrénées, des Vosges, dans des vallées aujourd'hui populeuses. On le voit aussi par les espèces animales et végétales qui ont dû changer d'aire, d'habitation, pour fuir devant un climat contraire.»

Quelles sont les causes des variations qui se sont produites dans notre climat pendant la période historique?

La première, la plus importante peut-être, est l'action des agents atmosphériques à la surface du globe. Tandis que la croûte terrestre, encore mal assise, est sujette à des mouvements lents, mais continuels, qui tendent à modifier le relief du sol, les agents atmosphériques agissent d'un autre côté. Sous l'action combinée de l'air, agent chimique; de la gelée, de l'humidité, des eaux errantes, agents physiques, les montagnes tendent à descendre dans les plaines, les continents comblent le fond des mers. Peu à peu le relief change, et par suite se modifient les mille circonstances secondaires qui participent à la fixation du climat. Puis vient l'action, incessante aussi, et non moins puissante de l'homme. L'homme, depuis son arrivée sur la terre, l'a modifiée de telle sorte qu'elle n'est plus reconnaissable. Les forêts, autrefois immenses et nombreuses, diminuent de plus en plus et sont remplacées par des cultures; les lacs et les étangs sont desséchés en grand nombre; les rivières, maintenues dans leurs lits, ne se répandent plus à chaque instant dans les campagnes; les marais sont changés en terres cultivées. L'action de ces transformations sur le climat est considérable; malheureusement, cette action ne se produit pas toujours à notre avantage. On peut dire d'une manière générale que les forêts, comparables à la mer sous ce rapport, atténuent les différences naturelles de température entre les diverses saisons, tandis que le déboisement écarte les extrêmes de froidure et de chaleur, et donne une plus grande violence aux courants atmosphériques. Le défrichement des terres incultes, l'assainissement des marais tend, au contraire, à rapprocher les extrêmes, à rendre le climat plus constant.

L'Amérique, soumise d'hier à l'action énergique de l'homme civilisé, a subi les plus rapides modifications. D'après M. Boussingault, les hivers y sont devenus moins rigoureux, les étés moins chauds; en même temps la température moyenne s'est légèrement accrue.

CHAPITRE IV
LA PÉRIODICITÉ DES GRANDS HIVERS ET LA PRÉVISION DU TEMPS.

Nous l'avons vu, le climat de la France a changé et changera toujours. Mais ces changements sont assez lents pour qu'on les néglige quand on ne considère qu'un petit nombre de siècles. Ils ne modifient pas d'une manière sensible la succession des saisons qui, aujourd'hui comme autrefois, se suivent et ne se ressemblent pas. Des hivers doux succèdent à des hivers rigoureux, des étés chauds à des étés sans soleil, sans qu'il semble possible de distinguer dans ces variations capricieuses une loi fixe qui en détermine le caractère.

Beaucoup de météorologistes se sont cependant occupés de rechercher cette loi, de prédire, longtemps à l'avance, les caractères généraux des saisons. Les systèmes abondent, tous empiriques, le plus souvent en opposition avec les faits; mais, au milieu des immenses séries d'observations, la loi reste encore à trouver. Les grands hivers se succèdent-ils avec une certaine régularité? Cette question ne date pas d'aujourd'hui. Nous lisons, en effet, dans l'Histoire de Provence, de Papon, que les grands hivers se reproduisent de telle sorte «que l'on serait presque tenté de croire qu'il y a dans la nature des retours périodiques qui ramènent les mêmes phénomènes à des époques à peu près semblables.»

Au dix-huitième siècle, on cherchait déjà à rattacher les variations anormales des saisons à des causes cosmiques, parmi lesquelles les taches du soleil arrivaient en première ligne. Maraldi écrivait, en 1720, dans une communication à l'Académie des sciences: «Quelques-uns se sont imaginé que le plus et le moins de chaleur qui règne dans la même saison en différentes années pouvoit venir des taches qui se rencontrent en même temps dans le soleil, et comme, lorsqu'il est taché, il n'envoye pas un si grand nombre de ses rayons à la terre, les chaleurs doivent être moins grandes que lorsqu'il n'a point de taches. Mais les expériences que nous avons des années précédentes montrent que cette explication n'est pas suffisante.»

Quelques années plus tard, en 1726, il y revient: «Il y a eu, dit-il, pendant presque toute l'année, un grand nombre de taches dans le soleil, et quelquefois plus grandes que n'est la surface de la terre, ce qui n'a pas empêché que nous n'ayons eu de grandes chaleurs. La même chose est arrivée en 1718 et 1719.»

De nos jours, on est revenu à cette considération des taches du soleil, et à la recherche de l'influence des causes cosmiques sur les variations des saisons. D'après certains météorologistes, et parmi eux quelques-uns des plus distingués, le soleil, la lune, joueraient le plus grand rôle dans ces variations, et de la périodicité de leurs positions dans le ciel résulterait une périodicité analogue dans la succession des saisons. Il semble pourtant bien difficile d'admettre que des causes cosmiques, essentiellement générales, produisent une si singulière répartition des grands froids que l'on puisse voir au même moment à Paris des rigueurs excessives, et au Havre des températures printanières. On ne saurait expliquer ces différences qu'en accordant aux causes locales une influence prépondérante, et alors que deviendrait la cause cosmique?

Est-ce à dire qu'on n'arrivera jamais à déterminer à l'avance le caractère général des saisons? Qu'on ne résoudra jamais le problème plus difficile encore de la prédiction exacte du temps? Non, sans doute; mais la solution nous semble encore bien lointaine...

Arago niait formellement la possibilité de prédire le temps. «Jamais, écrivait-il, une parole sortie de ma bouche, ni dans l'intimité, ni dans les cours que j'ai professés pendant plus de quarante années, n'a autorisé personne à me prêter la pensée qu'il serait jamais possible, dans l'état de nos connaissances, d'annoncer avec quelque certitude le temps qu'il fera une année, un mois, une semaine, je dirai même un seul jour d'avance.» Voilà pour le présent, et jusque-là il avait raison; mais il poursuit: «Jamais, quels que puissent être les progrès des sciences, les savants de bonne foi et soucieux de leur réputation ne se hasarderont à prédire le temps.» Et il ajoutait, paraît-il, dans la conversation: «Quiconque veut cesser d'être regardé comme un savant doit se mettre à prédire le temps.»

Cette conviction, si fortement exprimée, était le fruit de longues méditations. Arago ne niait pas l'existence des causes générales qui peuvent agir d'une manière, toujours la même, pour régler le temps; mais il admettait que les causes perturbatrices devaient dans tous les cas amener des modifications impossibles à prévoir. Il énumère ces causes perturbatrices non susceptibles d'être prévues. Ce sont: la progression des glaces polaires du côté de l'équateur, l'état de diaphanéité ou de phosphorescence de la mer, la mobilité de l'atmosphère, les obscurcissements accidentels de l'atmosphère, et les travaux des hommes sur les forêts, les marais, les lacs, le développement des villes.

Il est aisé de voir que toutes ces causes n'ont pas la même importance. Ce ne sont pas les travaux des hommes qui s'opposeront jamais à la prévision du temps; car ils ne modifient le climat que d'une manière lente et insensible. Les variations de diaphanéité et la phosphorescence de la mer, qui la rendent plus ou moins propre à absorber les rayons du soleil, sont des phénomènes locaux, temporaires, dont l'influence est certainement négligeable.

Celle de la progression des glaces polaires est plus importante. Il est certain que la dislocation des champs de glace des régions polaires, qui peuvent amener vers les latitudes tempérées d'immenses amas de glace non encore fondue, détermine en certaines années un refroidissement de nos côtes.

Ainsi, nous lisons dans les Mémoires de l'Académie des sciences pour l'année 1725: «Dans la grande mer qui est entre notre continent et l'Amérique, ordinairement on ne trouve plus de glaces dès le mois d'avril en deçà des 67e et 68e degrés de latitude septentrionale, et les sauvages de l'Acadie et du Canada disent que quand elles ne sont pas toutes fondues dans ce mois-là, c'est une marque que le reste de l'année sera froid et pluvieux. Mais M. Deslandes, qui depuis plusieurs années séjourne à Brest, et qui est en relation avec nos principales colonies, a su que cette année les glaces n'étaient pas fondues au mois de juin, et que les vaisseaux français qui vont à la pêche de la morue en ont trouvé des montagnes et des îles flottantes par le 41e et le 42e degré de latitude, spectacle qui leur était nouveau. Le 15 juin, deux vaisseaux pensèrent être surpris de ces mêmes glaces vers le 45e degré. Il se pourrait que le froid ou le peu de chaleur de l'été qu'on a eu en Europe tînt à cette cause, du moins en partie. Les météores d'un pays dépendent souvent de ceux d'un autre; ils sont tous en commerce, quelque éloignés qu'ils soient.»

Progression des glaces polaires du côté de l'équateur.

Plus près de nous, M. Renou a attribué le froid de l'été de 1810 à une grande débâcle des glaces polaires.

Voici donc une cause accidentelle qui peut amener dans certaines années d'importantes modifications dans nos climats. Mais, d'une part, elle intervient rarement et peut-être, en outre, se produit-elle dans des circonstances déterminées qu'on arrivera à connaître, de façon à tenir compte de ces débâcles dans la prévision du temps.

Reste enfin, parmi les causes perturbatrices d'Arago, la mobilité de l'atmosphère et ses obscurcissements accidentels, en un mot les mouvements de l'atmosphère. Toutes les autres causes accidentelles ne sont rien à côté de celle-là, ou plutôt celle-là les contient et les résume toutes. Le but des météorologistes actuels est justement de déterminer les lois de ces mouvements, d'où dépendent tous les changements de temps. Cette mobilité, ils la considèrent comme la cause principale qu'ils cherchent à connaître dans toutes ses manifestations. Ce but, ils l'atteindront, ils en ont tous la ferme espérance; et si Arago revenait, loin de persister dans son dédain pour ceux qui veulent prédire le temps, il se mettrait à leur tête pour les encourager et les diriger.

«Bien que je ne puisse réclamer, disait M. Robert H. Scott en 1873, ni pour moi, ni pour aucun météorologue, des progrès décisifs vers ce qu'on a si bien appelé la splendide possibilité de prédire la nature des saisons, j'espère cependant vous prouver que les progrès sont assez sérieux pour permettre de classer au nombre des sciences la connaissance du temps.»

Mais cette science ne peut se former tout d'un coup; et, comme les autres, elle ne peut faire que de lents progrès. «La météorologie, dit M. Angot, est une science tellement récente qu'on se saurait trop exiger d'elle. Constituée seulement d'hier, son développement commence à peine, et elle rencontre pour cela plus de difficulté que toute autre science. Seule, en effet, elle nécessite le concours d'un grand nombre de personnes, même de nations. Un observatoire suffit à l'astronome, un laboratoire au chimiste, au physicien, au naturaliste; pour faire utilement de la météorologie, il faudrait des milliers d'observateurs sur terre comme sur mer; il faudrait que la surface entière du globe fût surveillée de telle sorte qu'on pût retrouver l'origine, suivre la marche entière et constater la disparition de toutes les perturbations atmosphériques. Bien que les plus grands efforts soient faits pour atteindre ce résultat, nous en sommes loin encore.

Il faudrait des milliers d'observatoires sur terre...

»Il faudrait ensuite, dans quelques années, quand les données précises auront été multipliées, créer un enseignement pour la météorologie comme il en existe pour toute science; c'est là encore une condition indispensable de progrès, la seule qui puisse faire des météorologistes, comme on fait des mathématiciens, des physiciens et des naturalistes.

»Il ne vient guère aujourd'hui à l'esprit de personne qu'on puisse d'un jour à l'autre devenir astronome sans avoir appris l'astronomie, médecin sans avoir suivi des cours de médecine. Tout le monde, au contraire, se croit volontiers autorisé à imaginer une théorie météorologique sans avoir à s'embarrasser un seul instant d'études préalables. Aussi la météorologie est-elle malheureusement la partie de la science qui est le plus envahie par les conceptions à priori et les théories les plus étranges, les plus fantaisistes. Tantôt pour expliquer une année exceptionnelle on va invoquer l'éruption d'un volcan; tantôt on profite de ce que le Sahara est désert, et que nul ne peut dire ce qui s'y passe, pour l'accuser de toutes les perturbations. Autrefois, quand nous ne recevions pas d'observations d'Amérique, on faisait naître sur l'Atlantique toutes les tempêtes qui nous arrivent par l'ouest. Plus tard, quand les Américains eurent commencé à publier des cartes, on reconnut vite que bon nombre de ces tempêtes les avaient visités avant de nous parvenir. Les cartes américaines s'arrêtaient aux montagnes Rocheuses; c'est là qu'on mit le berceau des tempêtes, et une théorie vint bientôt montrer qu'elles devaient en effet s'y former sur place. Quelques années plus tard, les Américains étendirent leurs observations jusqu'au Pacifique, et l'on vit les dépressions barométriques arriver par l'ouest sur la Californie et franchir les montagnes Rocheuses en dépit des théories qui les y faisaient naître. Il va donc falloir reporter plus loin encore leur berceau. On pourrait presque en dire autant du plus grand nombre des théories en météorologie; ébauchées aujourd'hui sans base sérieuse et presque au hasard, elles sont destinées à disparaître demain devant la réalité des faits, ou à être modifiées de façon à devenir méconnaissables.

»Dans ces conditions, il semble qu'une seule voie soit ouverte, celle qu'ont suivie successivement toutes les sciences dont nous admirons aujourd'hui le développement: l'expérimentation. Il faut que tout le monde sache qu'il est plus utile aujourd'hui d'avoir de bonnes observations que des théories. Il faut que les météorologistes aient le courage d'envisager que la science qu'ils cultivent n'en est encore qu'à sa naissance, et qu'elle est soumise aux mêmes lois d'évolution que les autres. Dans les sciences expérimentales la théorie ne vient jamais que bien après l'observation. C'est vers celle-ci que doivent se porter tous les efforts, et quand le moment sera venu, quand le terrain sera suffisamment préparé, il viendra un Kepler ou un Newton qui édifiera sur nos travaux la théorie que nous poursuivons vainement.»

Certes, de telles espérances sont bien faites pour donner du courage aux observateurs, surtout quand on envisage la grandeur du but à atteindre: «La connaissance anticipée des alternatives du climat sera, dit M. Reclus, une des plus grandes conquêtes de l'homme. Déjà maître du présent par le travail, il le deviendra aussi de l'avenir par la science. Cette terre qu'il dit lui appartenir sera véritablement sienne; il en utilisera la force productive à son gré et fera servir toutes les vies inférieures, animaux et plantes, aux conforts de sa propre vie; mais, devenu possesseur de la terre, qu'il le devienne aussi de lui-même; qu'il triomphe enfin de ses propres passions, et qu'il apprenne à vivre en paix sur cette planète si souvent arrosée de sang! Que la terre puisse mériter bientôt le nom de «bienheureuse», que lui ont donné les peuples enfants!»

FIN

TABLE DES GRAVURES

  1. Au lieu de forêts, des amas de glaces éternelles
  2. Les habitants des régions polaires vivent le plus souvent sous terre
  3. La route et les bivouacs étaient jonchés de cadavres
  4. L'équipage sut y maintenir une température supérieure à +20 degrés
  5. Hiver de l'année 1108
  6. Les chiens du Grand Saint-Bernard
  7. 1875. Toulouse.—L'eau montant toujours, le spectacle devint plus lugubre
  8. Canada.—Sous l'action du vent, on voit ces bateaux se mouvoir sur la glace avec une grande rapidité
  9. Au milieu des glaçons
  10. Les déserts glacés du pôle
  11. Pris dans les glaces
  12. Attelage de chiens
  13. L'élan perce la neige à chaque pas et s'y enfonce
  14. Samoyèdes
  15. Esquimaux
  16. L'ours brun
  17. 1608. Anvers.—Les habitants dressèrent des tentes sur l'Escaut
  18. Les haillons dont ils étaient couverts...
  19. Une scène de l'hiver de 1776
  20. 1812.—Retraite de Russie
  21. 1830. La Garonne.—On ne voit sur les glaces que mâts brisés et chaloupes sans pilote
  22. 1844–1845.—Toutes les routes du midi furent couvertes de neige
  23. Nuits au bivouac sur la neige
  24. 1879.—Le Rhin
  25. Sur la Seine en décembre 1879
  26. La débâcle sur le Rhin
  27. Emploi de la dynamite aux glaces de la Saône
  28. Effets de la glace sur les essences forestières les plus résistantes (1879–1880)
  29. Figure théorique de l'action du soleil aux pôles et à l'équateur
  30. Progression des glaces polaires du côté de l'équateur
  31. Il faudrait des milliers d'observatoires sur terre

TABLE DES MATIÈRES

PARIS.—TYPOGRAPHIE DU MAGASIN PITTORESQUE
(JULES CHARTON, ADMINISTRATEUR DÉLÉGUÉ)
rue des Missions, 15

Chargement de la publicité...