Cours de philosophie positive. (2/6)
VINGT-DEUXIÈME LEÇON.
Considérations générales sur le mouvement de la terre.
Pour faciliter l'examen général de cette grande question fondamentale, il convient d'envisager séparément, comme à l'égard des autres astres, les deux mouvemens dont notre planète est animée, en commençant aussi par la rotation, bien plus simple à reconnaître directement que la translation. Cette décomposition est ici d'autant plus naturelle que, dans l'accomplissement total de la profonde révolution intellectuelle qui a dû résulter du passage de l'idée de repos à celle de mouvement, l'esprit humain a formé en effet une hypothèse intermédiaire, peu connue aujourd'hui, celle de Longomontanus, qui admettait la rotation de la terre en continuant à méconnaître sa translation, et qui, quelque absurde qu'elle soit sans doute, astronomiquement, n'a pas été inutile, sous le point de vue philosophique, comme moyen transitoire. Il est d'ailleurs évident que, suivant le principe général de la liaison de ces deux mouvemens dans un corps quelconque, les preuves directes de chacun deviennent ici, de même qu'envers toutes les planètes, autant de preuves indirectes de l'autre. Mais, de plus, cette relation présente, dans le cas actuel, un caractère tout spécial, qui ne saurait avoir lieu à l'égard d'aucun autre corps céleste: c'est l'impossibilité évidente que le mouvement annuel de la terre existe sans son mouvement diurne, quoique l'inverse ait pu logiquement être supposé.
La rotation de la terre ne pouvant point, par sa nature, être exactement commune au même degré à tous les points de sa surface, doit laisser, parmi les phénomènes purement terrestre quelques indices sensibles de son existence, comme je l'ai noté d'avance dans le premier volume, ce qui ne saurait être pour la translation. Il faut donc distinguer les preuves célestes et les preuves terrestres de notre mouvement diurne, tandis que notre mouvement annuel n'en comporte que du premier genre, qui sont, il est vrai, plus variées.
Les astronomes commencent avec raison, par écarter entièrement la considération des apparences immédiates, qui ne sauraient devenir, en aucun sens, un motif réel de décision, puisqu'elles s'accordent également bien avec les deux hypothèses opposées. Il est clair, en effet, que l'observateur, ne pouvant avoir nullement la conscience de la rotation de sa planète, doit apercevoir, en vertu de cette rotation, le même spectacle céleste que si le ciel tournait journellement, comme un système solide, autour de l'axe de la terre, et en sens contraire du vrai mouvement; ainsi qu'on l'observe habituellement dans une foule de cas analogues.
Dans l'enfance de l'esprit humain, l'opinion, d'ailleurs spontanée, de l'immobilité de la terre, et du mouvement quotidien de la sphère céleste autour d'elle, n'avait point, à beaucoup près, le degré d'absurdité qu'elle présente de nos jours chez le petit nombre d'intelligences mal organisées qui s'obstinent quelquefois à la maintenir: elle était, au contraire, ce me semble, aussi logique que naturelle. Car elle se trouvait être exactement en harmonie avec les idées profondément erronées que l'on se formait nécessairement des distances et des dimensions des astres avant la naissance de la géométrie céleste. Les astres étaient regardés comme très voisins, et par suite supposés très peu supérieurs à leurs grandeurs apparentes, en même temps qu'on devait naturellement s'exagérer beaucoup les dimensions de la terre, lorsqu'on eut commencé à lui reconnaître des limites. Avec de tels renseignemens, il eût été, évidemment, impossible de ne pas admettre l'immobilité d'une masse aussi immense, et le mouvement journalier d'un univers dont les élémens et les intervalles étaient, comparativement, aussi petits. Une conception tellement enracinée, et appuyée sur des motifs directs d'une telle force, indépendamment de la confiance énergique que lui prêtait l'ensemble des sentimens humains, ne pouvait donc être ébranlée que par une approximation au moins grossière, mais, pourtant géométrique, des distances et des dimensions célestes, comparées à la grandeur de la terre. Or, malgré que ces déterminations statiques, objet essentiel de la leçon dernière, doivent certainement précéder aujourd'hui l'étude des mouvemens dans une exposition rationnelle de la géométrie céleste, il n'a pu en être entièrement ainsi dans le développement historique de la science. L'astronomie grecque avait ébauché la théorie vraiment géométrique des mouvemens célestes, en n'envisageant essentiellement que les directions, sans s'être nullement occupée de mesurer les proportions de l'univers; ce qui a dû maintenir beaucoup plus long-temps l'opinion primitive sur le système du monde.
Mais, depuis que ces proportions ont commencé à être géométriquement appréciées, l'ensemble des notions sur lesquelles reposait une telle opinion a pris un caractère absolument inverse, qui a dû provoquer de plus en plus la formation de la conception copernicienne. Quand il a été une fois bien constaté que la terre n'est qu'un point au milieu des intervalles célestes, et que ses dimensions sont extrêmement petites comparativement à celles du soleil et même de plusieurs autres astres de notre monde, il est devenu absurde d'en faire le centre de divers mouvemens, et surtout l'immense rotation journalière du ciel a aussitôt impliqué une contradiction choquante. À la vérité, les astres extérieurs à notre système seront réputés 24000 fois moins lointains, d'après la leçon précédente, en n'admettant point la circulation annuelle de la terre: mais leurs distances n'en cesseraient pas d'être immenses, et beaucoup plus grandes que celle du soleil; ce qui doit, en outre, leur faire attribuer certainement des volumes au moins analogues. Dès lors, la prodigieuse vitesse que devraient avoir tous ces grands corps pour décrire en un jour, autour de la terre, des cercles d'une telle immensité, devient évidemment inadmissible, surtout quand on reconnaît que, pour l'éviter, il suffit en laissant tout ce système immobile, d'attribuer à la terre un très petit mouvement, qui n'excède point, même à l'équateur, le mouvement initial d'un boulet de 24. Cette considération est puissamment fortifiée en pensant, sous le point de vue mécanique, à l'énormité de la force centrifuge qui résulterait de mouvemens aussi étendus et aussi rapides, et qui exigerait continuellement, de la part de la terre, imperceptible comparativement à l'univers, un effort évidemment impossible, pour empêcher ces masses immenses de poursuivre à chaque instant leur route suivant la tangente, tandis que la rotation de la terre détermine seulement une force centrifuge presque insensible, aisément surmontée par la pesanteur, dont elle n'est, même à l'équateur, que la deux cent quatre-vingt-neuvième partie.
Une seconde preuve fondamentale, indépendante de la connaissance des intervalles et des dimensions, se tire de l'existence des mouvemens propres. Il a suffi de voir les astres passer les uns devant les autres pour être assuré qu'ils sont inégalement éloignés; ensuite, l'observation des mouvemens particuliers aux différentes planètes, en sens contraire du mouvement général du ciel, et selon des directions et des périodes fort distinctes, a constaté que tous les astres ne tenaient point ensemble. Or, il était évidemment impossible de concilier cette indépendance avec la liaison si étroite qu'exigeait l'harmonie fondamentale du mouvement diurne, où l'on voyait le ciel tourner tout d'une pièce. Aristote et Ptolémée avaient été inévitablement conduits, pour établir cette conciliation, à construire l'hypothèse si compliquée, quoique ingénieuse, d'un système de cieux solides et transparens, qui présente d'ailleurs tant d'absurdités physiques. Mais la simple connaissance de certains astres, comme les comètes, qui passent successivement dans toutes les régions célestes, aurait suffi seule à détruire tout ce pénible échafaudage, qui, suivant l'ingénieuse expression de Fontenelle, exposait ainsi l'univers à être cassé. Il est singulier que ce soit Tycho-Brahé, le plus illustre antagoniste de la découverte de Copernic, qui ait ainsi fourni un des argumens les plus sensibles contre sa propre opinion, en ébauchant, le premier, la vraie théorie géométrique des comètes.
Quel que doive être l'empire des opinions établies, surtout quand elles sont aussi profondément enracinées, l'ensemble des considérations précédentes, aurait, probablement, par son évidence de plus en plus puissante, déterminé les astronomes à reconnaître, long-temps avant Copernic, la réalité du mouvement de rotation de la terre; car, la précision des déterminations modernes n'était nullement nécessaire pour faire sentir la force de telles preuves: il suffisait d'une approximation grossière, déjà essentiellement obtenue à une époque très antérieure. Mais l'ignorance des lois fondamentales du mouvement présentait un obstacle nécessairement insurmontable à l'admission d'une théorie, dont la supériorité astronomique était sans doute vivement sentie, par un aussi grand astronome que Tycho entre autres, et qui toutefois paraissait absolument inconciliable avec l'observation de qui se passe habituellement sous nos yeux à la surface de la terre, principalement dans la chute des corps pesans. Copernic ne fit nullement disparaître cet obstacle radical, il dura encore près d'un siècle, jusqu'à la mémorable époque de la création de la dynamique par le génie de Galilée, qui établit, le premier, cette grande loi, que j'ai cru devoir présenter, dans la philosophie mathématique, comme une des trois bases physiques nécessaires de la mécanique rationnelle: l'indépendance totale des mouvemens relatifs de différens corps quelconques envers le mouvement commun de leur ensemble. Jusque alors, la rotation de la terre, quelque probable qu'elle fût comme hypothèse astronomique, était nécessairement inadmissible. Telle est la prépondérance des habitudes intellectuelles natives, que, sans que personne eût jamais pensé à faire l'expérience, on admettait, comme un fait incontestable, que la balle jetée du haut du mât, dans un vaisseau en mouvement, ne retombait point au pied du mât, mais à quelque distance en arrière, ce dont le moindre observateur eût immédiatement signalé la fausseté grossière. Delambre a justement remarqué, dans son Histoire de l'Astronomie moderne, combien l'argumentation des Coperniciens avant Galilée, dans cette célèbre discussion, était encore plus vicieuse et plus métaphysique à cet égard que celle de leurs adversaires, puisqu'ils admettaient aussi la réalité de ce prétendu fait, et que seulement ils s'efforçaient, par de vaines subtilités, de détruire l'objection qu'on en tirait très logiquement contre le mouvement de la terre. Même après les démonstrations de Galilée, il fallut encore que Gassendi provoquât spécialement, dans le port de Marseille, une expérience publique pour achever de convaincre à ce sujet les péripatéticiens obstinés.
Depuis que la propagation des saines doctrines mécaniques a fait ainsi disparaître la seule difficulté qui s'opposât réellement à l'admission de la rotation de la terre, on a cherché, dans l'examen plus approfondi de ces mêmes phénomènes de chute, une confirmation directe et terrestre de l'existence de ce mouvement. Il est clair, en effet, qu'un corps en tombant du sommet d'une tour très élevée, doit avoir une légère vitesse initiale horizontale dans le sens de la rotation terrestre, d'après le petit excès de la vitesse du sommet sur celle du pied, à raison de son cercle diurne un peu plus grand. Le corps, ainsi lancé comme un projectile, retombe donc nécessairement un peu à l'est du pied de la tour; et la quantité de cette déviation est aisément calculable, du moins en négligeant la résistance de l'air, en fonction de la hauteur de la tour et de sa latitude. Si cet écartement était plus grand, on aurait là un moyen expérimental très précieux de démontrer la rotation terrestre. Mais il est malheureusement trop petit, à l'égard même de nos édifices les plus élevés, pour que l'expérience soit vraiment décisive, à cause de l'impossibilité presque absolue, quelques précautions qu'on ait prises, de laisser tomber le corps sans qu'il reçoive aucune petite impulsion, comparable à celle dont on veut apprécier l'effet. Néanmoins, cette ingénieuse expérience, tentée en divers lieux au commencement de ce siècle, a généralement donné une déviation dans le sens convenable, quoique sa valeur n'ait pu être celle que la théorie avait assignée; ce qui fait espérer qu'on pourra plus tard, en choisissant des conditions plus favorables, parvenir à la compléter. Il est regrettable qu'on ne l'ait point essayée à l'équateur, où l'écartement doit avoir plus d'étendue qu'en aucun autre lieu.
Afin d'obtenir des preuves terrestres vraiment incontestables de la réalité de notre rotation, il faut considérer l'influence de la force centrifuge qui en résulte nécessairement, pour altérer la direction naturelle et surtout l'intensité propre de la pesanteur.
La célèbre observation faite par Richer à Cayenne en 1672, de la diminution d'environ 3/2 ligne, à l'équateur, dans la longueur exacte du pendule à secondes réglé à Paris, fournit, en l'analysant convenablement, la première confirmation directe du mouvement de rotation de la terre. Notre globe s'écarte trop peu, d'après la leçon précédente, de la figure exactement sphérique, pour qu'un tel décroissement de la pesanteur puisse provenir du seul renflement équatorial, en vertu de la loi générale de la variation de la gravité inversement au quarré de la distance au centre de la terre. Suivant l'aplatissement le plus certain, cette cause ne pourrait produire qu'une différence d'à peine 1/8 ligne. Reste donc, évidemment, 1 ligne pour l'influence propre de la force centrifuge, qui, étant, à l'équateur, à la fois la plus grande possible, et directement opposée à la gravité, doit la diminuer davantage qu'en tout autre lieu. La quantité de cette diminution, qui peut être aisément calculée à priori avec une entière certitude, coïncide, d'une manière admirable, entre les limites des erreurs des observations, avec la portion qui appartient ainsi à la force centrifuge dans le raccourcissement total; et cela, non-seulement à l'équateur, mais encore à toutes les latitudes où cette comparaison délicate a pu être établie avec le surcroît de soin qu'exige l'effet moins prononcé. Une démonstration aussi mathématique ne permettrait plus aucun doute sur la rotation de la terre, quand même on écarterait entièrement les preuves astronomiques, d'ailleurs si évidentes. C'est ainsi que l'immortelle observation de Richer se rattache aux deux plus grandes découvertes de la philosophie naturelle, le mouvement de la terre, et la théorie de la gravitation: les deux tiers de l'effet mesuré ont irrécusablement vérifié la rotation de notre planète, et l'autre tiers a conduit Newton à déterminer son aplatissement. Aucun autre fait particulier n'a eu peut-être d'aussi grandes conséquences dans toute l'histoire de l'esprit humain.
Passons maintenant à la considération spéciale du mouvement de translation de la terre, dont l'existence ne peut être constatée, comme nous l'avons remarqué, que par des preuves astronomiques, à cause de la différence tout-à-fait insensible de la vitesse des divers points de la terre en vertu de ce mouvement, qui ne saurait donc exercer la moindre influence sur nos phénomènes terrestres.
La seule position exacte de la question établit d'abord une analogie puissante en faveur de la théorie copernicienne, puisque la circulation de toutes les autres planètes autour du soleil avait été déjà constatée par Tycho lui-même, le système ancien proprement dit étant ainsi définitivement écarté de la discussion, qui s'est dès lors trouvée réduite à examiner si la terre circule aussi à son rang, comme Vénus, Mars, Jupiter, etc., ou bien si le soleil, centre reconnu de tous les mouvemens planétaires, parcourt annuellement l'écliptique autour de la terre immobile. Par ce simple énoncé, tout esprit impartial est, évidemment, porté à présumer que le vrai motif de cette indécision tient uniquement à la situation de l'observateur, qui, placé sur quelque autre planète, en eût fait sans doute aussi le centre général des mouvemens célestes.
Ici, comme à l'égard de la rotation, il est d'abord évident que les apparences ne peuvent rien décider. Car, en ôtant la terre du centre de l'écliptique pour y mettre le soleil, il suffit de placer la terre en un point de cette orbite diamétralement opposé à celui qu'occupait le soleil auparavant; et dès lors, sans rien changer au sens du mouvement, l'observateur terrestre apercevra continuellement le soleil dans la même direction que ci-devant. En regardant le mouvement annuel de la terre comme n'altérant point le parallélisme de son axe de rotation, toute l'explication des phénomènes relatifs aux saisons et aux climats, étant reprise sous ce point de vue, donnera, évidemment, les mêmes résultats que dans l'ancien système. Tous les phénomènes les plus sensibles du ciel sont donc exactement les mêmes pour les deux hypothèses. Ainsi, c'est uniquement dans des comparaisons plus délicates et plus détournées, fondées sur des observations plus approfondies, qu'il faut chercher des motifs de prononcer entre elles, en considérant des phénomènes qui conviennent beaucoup mieux à l'une qu'à l'autre, ou même, comme on en a découvert, qui soient absolument incompatibles avec le système ancien, et mathématiquement en harmonie avec le système moderne. Si l'on ne voulait point distinguer, à cet égard, entre les preuves directes et indirectes, il faudrait, pour ainsi dire, envisager l'ensemble des phénomènes célestes, tant mécaniques que géométriques; car il n'en est presque aucun qui ne puisse fournir indirectement une confirmation spéciale du mouvement de notre planète, dont l'influence doit, en effet, se faire sentir naturellement dans toutes nos explorations astronomiques. Mais il ne saurait évidemment être question, en ce moment, que des preuves les plus directes. Je crois devoir les réduire à trois principales, que je vais successivement considérer dans l'ordre croissant de leur validité logique; elles se tirent de l'examen des phénomènes: 1º. de la précession des équinoxes, modifiée par la nutation de l'axe terrestre; 2º. des apparences stationnaires et rétrogrades que présentent les mouvemens planétaires; 3º. enfin, de l'aberration de la lumière, d'où l'on a déduit la démonstration la plus décisive et la plus mathématique.
En comparant deux catalogues d'étoiles dressés à des époques différentes, on remarque, dans les positions de tous ces astres, une variation très singulière et croissante avec le temps, qui ne semble assujettie à aucune loi, quand on se borne à envisager les ascensions droites et les déclinaisons. Mais, si l'on en déduit les longitudes et les latitudes, on reconnaît aussitôt que les dernières n'ont éprouvé aucun changement, et que les premières ont subi une modification commune, consistant dans une augmentation générale d'environ cinquante secondes par an, qui se continue indéfiniment avec uniformité. Cette importante découverte fut faite par Hipparque, d'après la différence de deux degrés qu'il aperçut entre ses longitudes d'étoiles et celles qui résultaient des observations d'Aristille et Timocharis un siècle et demi auparavant. La précision des observations modernes permet de vérifier ce fait général par des comparaisons beaucoup plus rapprochées, et même d'une année à l'autre. Ce phénomène équivaut évidemment à une rétrogradation des points équinoxiaux sur l'écliptique contre l'ordre des signes; d'où vient sa dénomination habituelle, à cause de l'avancement continuel d'environ vingt minutes, qui en résulte nécessairement chaque année pour l'époque des équinoxes.
Cette précession des équinoxes ne pouvait être conçue, dans l'hypothèse de la terre immobile, qu'en faisant tourner l'univers tout d'une pièce autour des pôles de l'écliptique en vingt-cinq mille neuf cent vingt ans, en même temps qu'il tournait chaque jour, en sens contraire, autour des pôles de l'équateur. Aussi Ptolémée avait-il imaginé, à cet effet, un ciel de plus. Au lieu de cette complication inintelligible, il suffit, au contraire, en admettant le mouvement de la terre, d'altérer le parallélisme de son axe de rotation d'une quantité presque insensible; car, le phénomène sera complètement représenté, si l'on fait tourner lentement cet axe, pendant cette longue période, autour de celui de l'écliptique, en formant avec lui un angle constant.
La différence des deux hypothèses à cet égard devient bien plus sensible encore en considérant le phénomène secondaire, désigné sous le nom de nutation, dont les anciens n'ont pu avoir aucune connaissance, à cause de son extrême petitesse, quoiqu'il ne soit qu'une sorte de différentiation de la précession des équinoxes, et qu'il se manifeste essentiellement de la même manière, pourvu que les observations soient faites avec toute la précision moderne. Ce phénomène remarquable, dont la période est de dix-huit ans environ, avait été indiqué par Newton d'après la théorie de la gravitation; mais il a été réellement constaté, pour la première fois, par Bradley. On le représente aisément, dans l'hypothèse copernicienne, en modifiant un peu le mouvement conique précédent de l'axe terrestre, qui correspond à la précession. Il faut alors concevoir que cet axe, au lieu d'occuper à chaque instant une des génératrices de ce cône, tourne autour d'elle en dix-huit ans, suivant un autre cône très petit, ayant pour base une ellipse, dont les deux demi-axes sont à peu près de neuf secondes et de six secondes. Ce phénomène obligerait évidemment, dans l'hypothèse de la terre en repos, à supposer à l'univers un troisième mouvement général, encore plus difficile à concilier que celui de la précession avec le mouvement fondamental.
La considération de ces phénomènes du point de vue mécanique rend beaucoup plus frappant le contraste des deux systèmes à ce sujet. Car, ces légères altérations du parallélisme de l'axe terrestre sont, d'après la théorie de la gravitation, une simple conséquence nécessaire et évidente, comme je l'indiquerai plus tard, de l'action du soleil, et surtout de la lune, sur le renflement équatorial de notre globe, suivant le beau travail de D'Alembert, qui explique complètement, non-seulement la nature, mais encore la quantité exacte de ces deux perturbations.
Voilà donc une première classe de phénomènes qui, sans être absolument inconciliables avec l'ancien système du monde, s'accordent infiniment mieux avec le mouvement de la terre, même en se bornant à les envisager sous le rapport géométrique, comme nous devons le faire actuellement 7.
Note 7: (retour) Craignant d'interrompre la série naturelle des idées dans cette importante exposition, je n'ai pas cru devoir mentionner l'application chronologique qu'on a voulu faire quelquefois de la procession des équinoxes, d'après l'indication de Newton à ça sujet, afin de remonter à des époques très reculées, par les monumens de diverses sortes qui retraçaient alors l'état du ciel, à raison de soixante-douze ans pour chaque degré de différence dans la position des points équinoxiaux. Quoique sans doute très rationnelle en elle-même, cette application me semble réellement dépourvue de toute utilité essentielle, à cause de l'extrême imperfection nécessaire des observations antiques, et de la grossière infidélité de leur expression par les monumens considérés. Car, il résulterait probablement de cette double cause, convenablement appréciée, une incertitude chronologique très supérieure, dans la plupart des cas, à celle que laissent les procédés ordinaires de l'exploration historique. Cette méthode ne deviendrait donc applicable, avec quelque précision, qu'à partir de la naissance de la véritable astronomie chez les Grecs; et, pour des temps si peu lointains, les autres renseignemens suffisent déjà entièrement. Je ne pense pas qu'on puisse citer aucune véritable découverte chronologique qui soit effectivement due à ce procédé, depuis plus d'un siècle qu'on s'en est occupé.
Cette évidente supériorité du système copernicien, est encore plus clairement prononcée à l'égard des nombreux phénomènes connus sous le nom de rétrogradations et stations des planètes, qui, dans l'hypothèse de la terre immobile, ne pouvaient être que vaguement expliqués à l'aide des suppositions les plus forcées et les plus arbitraires; tandis que toutes leurs diverses circonstances, même numériquement appréciées, résultent immédiatement, et de la manière la plus simple, du seul mouvement de notre planète.
On a justement comparé ces phénomènes aux apparences que présente journellement un bateau, descendant une large rivière, à un observateur qui la descend aussi de son côté, sans avoir conscience de son mouvement; et d'où il résulte que le mouvement de ce bateau semble direct, stationnaire, ou rétrograde, selon que sa vitesse est supérieure, égale, ou inférieure à celle de l'observateur. Nous concevons en effet, que le mouvement de notre globe doit nous faire continuellement apercevoir chaque planète au point de son orbite où elle se trouverait en lui imprimant, en sens contraire, une vitesse égale à la nôtre. Cela posé, à partir du moment où la planète quelconque est le plus près de nous, afin que les deux mouvemens soient exactement dans le même sens, cette correction la fera évidemment paraître rétrograde pendant un temps plus ou moins long dépendant des vitesses et des distances relatives, jusqu'à ce que sa direction se trouve suffisamment changée, par la continuité de sa propre circulation, pour que son mouvement apparent redevienne direct, comme il l'est le plus souvent. Il est d'ailleurs évident que, suivant la règle ordinaire de tous les phénomènes qui changent de signe, il y aura, vers la fin et vers le renouvellement de la rétrogradation, un instant où la planète paraîtra sensiblement stationnaire dans le ciel. Toutes les parties du phénomène, l'époque et la durée de la rétrogradation, l'étendue de l'arc qu'elle embrasse et la position de ses points extrêmes, peuvent être exactement calculées d'après la distance de la planète au soleil et la durée de sa révolution, comparées au mouvement de la terre. On peut, dans ce cas, simplifier beaucoup le calcul, sans aucun inconvénient réel, en supposant tous les mouvemens circulaires et uniformes, et même dans le plan de l'écliptique. Les résultats doivent évidemment présenter de grandes différences, suivant les diverses planètes. Leur comparaison générale montre que la durée absolue de la rétrogradation augmente à mesure qu'on s'éloigne du soleil; mais que, relativement au temps périodique de la planète, elle diminue, au contraire, très rapidement et de plus en plus. Or, l'observation directe de ces phénomènes vérifie, d'une manière remarquable, toutes ces conséquences de la théorie du mouvement de la terre, même quant à leur valeur numérique.
Ces apparences si simples n'avaient pu être expliquées, dans l'ancien système, qu'en faisant mouvoir chaque planète sur la circonférence d'un cercle idéal, dont le centre parcourait l'orbite effective. On conçoit que, ces deux mouvemens se trouvant être tantôt conformes et tantôt contraires, il était possible, en disposant convenablement du rayon arbitraire de cet épicycle et du temps fictif de la révolution correspondante, de représenter, jusqu'à un certain point, la rétrogradation et la station de chaque planète. Cette conception, qu'il faut juger comme subordonnée à l'ancien système, était sans doute fort ingénieuse. Mais, malgré toutes les ressources arbitraires qu'on s'y était ménagé, elle ne satisfaisait que d'une manière très vague aux phénomènes mêmes qui l'avaient provoquée, et elle était manifestement contraire à la véritable nature des orbites planétaires, comme nous le verrons dans la leçon suivante. Ainsi, indépendamment de son absurdité physique, elle ne pouvait évidemment soutenir à cet égard la moindre concurrence, avec la théorie de Copernic, qui a rendu ces phénomènes tellement simples et vulgaires, que les astronomes ne s'en occupent plus aujourd'hui. On n'avait pas même tenté d'y expliquer la circonstance la plus frappante que présentent les rétrogradations planétaires, leur coïncidence invariable avec l'époque de l'opposition, s'il s'agit d'une planète supérieure, ou de la conjonction inférieure, à l'égard des deux autres planètes, ce qui, au contraire, résulte, au premier coup d'oeil, de l'explication moderne.
Le mouvement annuel de la terre pourrait donc être regardé comme suffisamment constaté par cette seconde classe de phénomènes, qui faisait en effet la principale force de l'argumentation des coperniciens avant Képler et Galilée. Néanmoins, comme elle peut à la rigueur se concilier, jusqu'à un certain point, avec l'ancien système du monde, quelque étrange et imparfaite qu'y soit son explication, l'astronomie moderne, dans l'admirable sévérité de sa méthode, ne proclame aujourd'hui, comme une vraie démonstration mathématique du mouvement de la terre, que celle qui résulte de l'analyse exacte des phénomènes si variés de l'aberration de la lumière, absolument incompatibles avec l'immobilité de notre globe, et si parfaitement déduits au contraire par le grand Bradley de la théorie copernicienne; quoique, d'ailleurs, cette théorie se trouvât déjà généralement admise par les astronomes, quand ces phénomènes furent découverts. Telle est la troisième considération fondamentale, qui me reste à indiquer ici, au sujet du mouvement de la terre.
Il est préalablement indispensable d'examiner comment l'astronomie parvient à mesurer la vitesse avec laquelle la lumière se propage.
Les distances terrestres sont beaucoup trop petites pour que le procédé qui permet d'estimer, par des observations directes, la durée de la propagation du son, puisse être jamais applicable à la lumière, dont le mouvement est tellement rapide qu'on ne saurait constater, quelques précautions qu'on ait prises, la moindre différence perceptible entre l'instant où la lumière est émise en un certain lieu et le moment où elle est vue d'un autre lieu aussi éloigné que possible, quoique les deux phénomènes ne soient pas sans doute exactement simultanés. Mais la grandeur des espaces intérieurs de notre système solaire comporte, au contraire, une évaluation très précise de cette vitesse. Toutefois, il semble au premier abord, que, quel que soit le temps employé par la lumière à nous venir des astres, il n'en doit résulter qu'un simple retard dans l'époque que nous assignons à chacune de leurs positions, ce qui n'exercerait aucune influence sur nos observations comparatives. C'est pourquoi ce temps ne peut être aperçu et mesuré qu'en considérant des phénomènes uniformes qui s'exécutent successivement à des distances de la terre extrêmement inégales, et qui, dès lors, présenteront pour cette seule cause des différences appréciables suivant les diverses situations. Tel est, en effet, le procédé imaginé par Roëmer, auteur de cette immortelle découverte, que lui fournit l'observation comparative des éclipses des satellites de Jupiter dans les situations opposées de cette planète à l'égard de la terre.
Le premier satellite, par exemple, est éclipsé par Jupiter toutes les quarante-deux heures et demie. Supposons que les tables en aient été dressées pour la moyenne distance de Jupiter à la terre, qui a lieu lorsque Jupiter nous semble à quatre-vingt-dix degrés environ du soleil. En comparant à cette situation moyenne l'époque de l'opposition et celle de la conjonction, il est clair que l'apparition de l'éclipse aura lieu plus tôt dans le premier cas, et plus tard dans le second, à cause du chemin moindre ou plus grand que la lumière devra parcourir. La confrontation des deux cas extrêmes détermine le temps très sensible employé par la lumière à décrire le diamètre de l'orbite terrestre, et il en est résulté qu'elle nous vient du soleil en huit minutes environ. L'observation des autres satellites, et, plus tard, celle des satellites de Saturne et même d'Uranus, ont fourni à cet égard de nombreux moyens de vérification, qui, d'ailleurs, ont constaté l'exacte uniformité du mouvement de la lumière, du moins entre les limites de notre monde.
D'après cette importante détermination préliminaire, il devient aisé de concevoir comment le mouvement de la terre produit les phénomènes de l'aberration de la lumière dans les étoiles et dans les planètes.
Quoique la lumière emploie certainement plusieurs années à nous parvenir, même des étoiles les plus voisines, il n'en peut évidemment résulter, si la terre est immobile, qu'une simple erreur d'époque, et jamais aucune erreur de lieu. Au contraire, notre mouvement doit nécessairement altérer un peu la direction suivant laquelle nous apercevons l'astre, et qui s'obtient alors en composant, d'après la règle ordinaire du parallélogramme des mouvemens, la vitesse de la lumière avec celle de la terre. Comme la première est environ dix mille fois supérieure à la seconde, cette déviation ne peut être, à son maximum (qui a lieu lorsque les deux mouvemens sont rectangulaires), que de vingt secondes, tantôt en un sens, tantôt dans l'autre; d'où résulte au plus une variation de quarante secondes dans les positions des étoiles pendant tout le cours de l'année. Il fallait donc toute la précision des observations modernes pour parvenir à la constater avec une entière certitude, quoique plusieurs astronomes aient semblé l'entrevoir un peu avant Bradley, sans pouvoir d'ailleurs se l'expliquer en aucune manière.
La loi fondamentale de cette déviation ne laisse évidemment rien d'arbitraire. L'aberration a toujours lieu dans le plan qui passe à chaque instant par la direction variable et exactement connue du mouvement de la terre, et par le rayon visuel mené à l'étoile, qui peut être regardé, d'après la leçon précédente, comme sensiblement parallèle, en tous temps, à la droite que déterminent la longitude et la latitude de cet astre. L'angle formé par ces deux droites règle tous les changemens que ce phénomène doit présenter. Tout est donc mathématique ici, et peut être confronté, sans la moindre équivoque, à l'observation directe, après avoir, pour plus de facilité, déduit de l'aberration primitive les variations qu'elle entraîne dans l'ascension droite et la déclinaison, préalablement corrigées de la précession.
En considérant la marche générale du phénomène, on peut envisager l'ensemble des rayons visuels menés à l'étoile dans toutes les positions de la terre, comme formant un cylindre plus ou moins oblique, dont la base est le cercle de l'écliptique. Le plus grand angle que la génératrice de ce cylindre puisse former avec la tangente de la base, et qui détermine la plus grande aberration, a lieu dans les deux points diamétralement opposés où son plan est perpendiculaire à l'écliptique: l'angle est au contraire le plus éloigné possible d'être droit, d'où résulte le minimum d'aberration, dans les deux points de l'écliptique situés à quatre-vingt-dix degrés des précédens. Le développement total du phénomène, pendant le cours de l'année, doit donc présenter quatre phases principales, deux maxima et deux minima, tantôt dans un sens, tantôt dans l'autre, suivant les directions opposées de la terre aux deux moitiés de sa route. Cette marche caractéristique de l'aberration, et surtout la périodicité si frappante de l'ensemble des phénomènes après chaque année révolue, ont été pour Bradley les premiers symptômes qui l'aient naturellement conduit à en chercher la vraie théorie dans la combinaison du mouvement de la terre avec le mouvement de la lumière.
L'aberration doit, évidemment, présenter des différences très considérables suivant les diverses étoiles. Ce qui vient d'être indiqué sur sa marche générale, correspond essentiellement au cas le plus ordinaire d'une étoile plus ou moins écartée de l'écliptique. Mais, si l'on envisage les deux cas extrêmes, il est d'abord évident que, pour une étoile située au pôle de l'écliptique, le cylindre précédent deviendra droit, et, par conséquent, l'aberration fondamentale aura toujours la même valeur, égale à son maximum de vingt secondes, et sera seulement tantôt d'un côté, tantôt de l'autre. Quant au contraire, à une étoile située exactement dans le plan de l'écliptique, les variations seront plus prononcées qu'en aucun autre cas; puisque, notre cylindre se réduisant alors à un plan, l'aberration pourra être nulle à deux époques opposées de l'année, tandis que, à trois mois de chacune d'elles, elle atteindra toute sa valeur. Voilà donc une nouvelle source de vérifications très sensibles pour la théorie générale de l'aberration.
Enfin, l'observation des planètes doit nécessairement être affectée aussi d'une erreur de lieu semblable à l'aberration des étoiles. Seulement, la loi fondamentale en est plus compliquée; car, au lieu du simple parallélogramme des mouvemens, il faut considérer alors le parallélépipède destiné à composer les trois vitesses de la lumière, de la terre, et de la planète; ce qui produit des formules plus embarrassantes; mais d'ailleurs entièrement analogues. Cette nouvelle aberration est susceptible d'un troisième genre de changement, dû aux vitesses fort inégales des diverses planètes, indépendamment de celles qui correspondent aux directions continuellement variables de la terre et de la planète. Il en résulte des différences plus étendues entre les valeurs extrêmes du phénomène, ainsi qu'une moindre régularité dans ses phases principales, quoique tout continue évidemment à pouvoir être calculé à priori avec exactitude.
Tel est, dans son ensemble, l'esprit du beau travail de Bradley, qu'on peut considérer comme présentant, après la grande suite de recherches de Képler, la plus haute manifestation de génie astronomique qui ait jamais été produite jusqu'ici: une nouvelle classe de phénomènes très délicats et très variés, ramenée mathématiquement tout entière, et jusque dans ses moindres détails numériques, à un seul principe éminemment simple et lucide. Le merveilleux accord de cette théorie avec les observations directes les plus précises, diversifiées de mille manières, nous offre donc enfin une démonstration complètement irrécusable de la réalité du mouvement annuel de la terre, sans lequel aucun de ces nombreux phénomènes ne saurait évidemment avoir lieu.
La vitesse due à la rotation quotidienne de notre globe doit aussi, d'après le même principe fondamental, produire une certaine aberration diurne, présentant, comme l'aberration annuelle, quatre phases principales et analogues, séparées par des intervalles de six heures, et susceptible, en outre, d'un nouvel ordre de variations, suivant les latitudes des divers observatoires. Mais nos observations ne deviendront peut-être jamais assez précises pour procurer à notre intelligence la vive satisfaction de trouver, dans un même ordre de phénomènes, une démonstration mathématique de la rotation de notre planète aussi bien que de sa translation. En effet, la vitesse qui résulte de la rotation de la terre étant plus de soixante fois moindre, même à l'équateur, que celle due à la translation, le maximum de cette aberration diurne est un peu au-dessous de un tiers de seconde, et par conséquent inappréciable jusqu'ici. Il en serait, à bien plus forte raison, de même pour les plus grandes vitesses artificielles que nous puissions nous imprimer, et qui ne sauraient produire aucune aberration perceptible dans les objets fixes vers lesquels nous dirigerions nos regards pendant ces mouvemens.
Il ne faut pas négliger de noter, au sujet de la théorie de l'aberration, que tous les calculs y étant fondés sur l'uniformité du mouvement de la lumière, leur exacte harmonie avec l'observation immédiate a étendu, aux plus grands espaces imaginables, la preuve de cette uniformité, constatée seulement jusque alors dans l'intérieur de notre monde par le travail de Roëmer. En même temps, on a ainsi reconnu que la vitesse de la lumière est la même pour toutes les étoiles, ou, du moins, que les différences ne peuvent point s'élever à un vingtième de la valeur moyenne.
Enfin, il est évident que la connaissance de l'aberration a nécessité désormais, dans toutes les observations astronomiques, une nouvelle correction fondamentale, à joindre à celles de la réfraction et de la parallaxe, avant de pouvoir les employer à des déterminations qui exigent toute la précision possible. Il en est de même à l'égard de la précession et de la nutation. Ces trois nouvelles corrections générales peuvent se faire par des formules trigonométriques essentiellement analogues à celles déjà usitées pour la réfraction et la parallaxe, sauf le changement des coefficiens. On conçoit que, par l'ensemble de ces opérations, le simple dépouillement d'une observation brute, faite avec les meilleurs instrumens, soit devenu, pour les modernes, une opération délicate et pénible.
Telles sont, en aperçu, les diverses considérations essentielles dont l'influence combinée a graduellement conduit l'homme à reconnaître enfin, de la manière la plus irrésistible, le double mouvement effectif de la planète qu'il habite. Aucune révolution intellectuelle ne fait autant d'honneur à la rectitude naturelle de l'esprit humain, et ne montre aussi bien l'action prépondérante des démonstrations positives sur nos opinions définitives, car aucune n'a eu à surmonter un tel ensemble d'obstacles fondamentaux. Un très petit nombre de philosophes isolés, sans autre supériorité sociale que celle qui dérive du génie positif et de la science réelle, a suffi pour détruire, en moins de deux siècles, chez tous les hommes civilisés, une doctrine aussi ancienne que notre intelligence, directement établie sur les apparences les plus fortes et les plus vulgaires, intimement liée au système entier des opinions dirigeantes, et, par suite, aux intérêts généraux des plus grands pouvoirs existans, et à laquelle, enfin, l'orgueil humain prêtait même un appui instinctif, dans le secret de chaque conscience individuelle.
Ce n'est pas ici le lieu d'analyser l'influence nécessaire qu'une innovation aussi radicale a effectivement exercée et doit exercer de plus en plus sur l'ensemble des idées humaines. Cet examen appartient spécialement à la dernière partie de cet ouvrage, destinée, comme on sait, à étudier les lois naturelles de notre développement social. Mais il convient d'indiquer ici, d'une manière générale, l'opposition directe et inévitable que présente la connaissance du mouvement de la terre avec tout le système des croyances théologiques. Ce système, en effet, repose évidemment sur la notion de l'ensemble de l'univers essentiellement ordonné pour l'homme; ce qui doit paraître absurde, même aux esprits les plus ordinaires, quand il est enfin constaté que la terre n'est point le centre des mouvemens célestes, qu'on n'y peut voir qu'un astre subalterne, circulant à son rang et en son temps, autour du soleil, entre Vénus et Mars, dont les habitans auraient tout autant de motifs de s'attribuer le monopole d'un monde qui est lui-même presque imperceptible dans l'univers. Les demi-philosophes qui ont voulu maintenir la doctrine des causes finales et des lois providentielles, en s'écartant des notions vulgaires admises de tout temps sur la nature de leur destination, sont tombés, ce me semble, dans une grave inconséquence fondamentale. Car, après avoir ôté la considération, au moins claire et sensible, du plus grand avantage de l'homme, je défie qu'on puisse assigner aucun but intelligible à l'action providentielle. L'admission du mouvement de la terre, en faisant rejeter cette destination humaine de l'univers, a donc tendu nécessairement à saper par sa base tout l'édifice théologique. On s'explique aisément ainsi la répugnance instinctive des esprits vraiment religieux contre cette grande découverte, et l'acharnement opiniâtre du pouvoir sacerdotal contre son plus illustre promoteur.
La philosophie positive n'a jamais détruit une doctrine quelconque, sans lui substituer immédiatement une conception nouvelle, capable de satisfaire encore plus complètement aux besoins fondamentaux et permanens de la nature humaine, comme j'aurai tant d'occasions de le constater dans le quatrième volume de cet ouvrage. Ainsi, la vanité de l'homme a dû être, sans doute, profondément humiliée, quand la connaissance du mouvement de la terre est venue dissiper les illusions puériles qu'il s'était faites sur son importance prépondérante dans l'univers. Mais, en même temps, le seul fait de cette découverte ne tendait-il point nécessairement à lui donner un sentiment plus élevé de sa vraie dignité intellectuelle, en lui faisant apprécier toute la portée de ses moyens réels convenablement employés, par l'immense difficulté que notre position, dans le monde dont nous faisons partie, opposait à l'acquisition exacte et certaine d'une telle vérité? Laplace a justement signalé cette considération philosophique. À l'idée fantastique et énervante d'un univers arrangé pour l'homme, nous substituons la conception réelle et vivifiante de l'homme découvrant, par un exercice positif de son intelligence, les vraies lois générales du monde, afin de parvenir à le modifier à son avantage entre certaines limites, par un emploi bien combiné de son activité, malgré les obstacles de sa condition? Laquelle est, au fond, la plus honorable pour la nature humaine, parvenue à un certain degré de développement social? Laquelle est le mieux en harmonie avec nos plus nobles penchans? Laquelle enfin tend à stimuler avec plus d'énergie notre intelligence et notre activité? Si l'univers était réellement disposé pour l'homme, il serait puéril à lui de s'en faire un mérite, puisqu'il n'y aurait nullement contribué, et qu'il ne lui resterait qu'à jouir, avec une inertie stupide, des faveurs de sa destinée; tandis qu'il peut, au contraire, dans sa véritable condition, se glorifier justement des avantages qu'il parvient à se procurer en résultat des connaissances qu'il a fini par acquérir, tout ici étant essentiellement son ouvrage 8.
Une dernière conséquence philosophique, très imparfaitement appréciée jusqu'ici, et qui me semble fort importante, résulte nécessairement de la doctrine du mouvement de la terre. C'est la distinction, désormais profondément tranchée, entre l'idée d'univers et celle de monde, trop souvent encore prises l'une pour l'autre. On n'a point reconnu jusqu'à présent que la notion d'univers, c'est-à-dire la considération de l'ensemble des grands corps existans comme formant un système unique, était essentiellement fondée sur l'opinion primitive à l'égard de l'immobilité de la terre. Dans cette manière de voir, tous les astres constituaient, en effet, malgré leurs caractères propres et la diversité de leurs mouvemens, un véritable système général, ayant la terre pour centre évident. Au contraire, la connaissance du mouvement de notre globe, transportant subitement toutes les étoiles à des distances infiniment plus considérables que les plus grands intervalles planétaires, n'a plus laissé, dans notre pensée, de place à l'idée réelle et sensible de système qu'à l'égard du très petit groupe dont nous faisons partie autour du soleil. Dès lors, la notion de monde s'est introduite comme claire et usuelle; et celle d'univers est devenue essentiellement incertaine et même à peu près inintelligible. Car, nous ignorons complétement aujourd'hui, et nous ne saurons probablement jamais avec une véritable certitude, si les innombrables soleils que nous apercevons composent finalement, en effet, un système unique et général, ou, au contraire, un nombre, peut-être fort grand, de systèmes partiels, entièrement indépendans les uns des autres. L'idée d'univers se trouve donc ainsi essentiellement exclue de la philosophie vraiment positive, et l'idée de monde devient la pensée la plus étendue qu'il nous soit permis de poursuivre habituellement avec fruit; ce qui doit être regardé comme un véritable progrès, cette pensée ayant l'avantage d'être, par sa nature, exactement circonscrite, tandis que l'autre est, de toute nécessité, vague et indéfinie; comme je l'ai remarqué au commencement de ce volume. Cette restriction de nos conceptions générales usuelles est d'autant plus rationnelle que nous avons acquis, par l'expérience la plus étendue et la plus décisive, la conviction de l'indépendance fondamentale des phénomènes intérieurs de notre monde, les seuls dont la connaissance nous soit indispensable, à l'égard des phénomènes vraiment universels, puisque, comme je l'ai déjà signalé, les tables astronomiques de l'état de notre système solaire, dressées sans avoir aucun égard à l'action des autres soleils, coïncident journellement avec les observations directes les plus minutieuses.
La théorie du mouvement de la terre n'a point encore certainement exercé, dans notre manière de voir habituelle, toute son influence nécessaire, surtout au sujet de cette distinction fondamentale, qui en est néanmoins une conséquence immédiate et évidente. Cela tient, sans doute, à l'extrême imperfection de notre système d'éducation, qui ne permet, même aux plus éminens esprits, d'être initiés à ces hautes pensées philosophiques, que lorsque tout l'ensemble de leurs idées a déjà reçu la profonde empreinte habituelle d'une doctrine absolument opposée: en sorte que les connaissances positives qu'ils parviennent à acquérir, au lieu de dominer et de diriger leur intelligence, ne servent ordinairement qu'à modifier et à contenir la tendance vicieuse qu'on a d'abord développée en elle.
VINGT-TROISIÈME LEÇON.
Considérations générales sur les lois de Képler, et sur leur application à la théorie géométrique des mouvemens célestes.
La connaissance du mouvement de la terre nous conduit naturellement à nous transporter au point de vue solaire, puisqu'il devient dès lors nécessaire, et en même temps possible, de ramener nos observations immédiates à celles qui seraient faites du centre du soleil, désormais reconnu comme le vrai centre immobile de tous les mouvemens intérieurs de notre monde, seul objet essentiel de nos études astronomiques. Cette transformation, justement nommée parallaxe annuelle, suit, en effet, les mêmes règles que la parallaxe ordinaire ou diurne, examinée dans la vingtième leçon: elle est seulement beaucoup plus grande, la distance de la terre au soleil y remplaçant le rayon de la terre; ce qui n'a d'influence que sur les coefficiens des formules trigonométriques déjà usitées dans le premier cas. À la vérité, le changement qu'éprouve, pendant le cours de l'année, la distance de la terre au soleil, tend à introduire, entre ces deux réductions, une différence essentielle. Mais, cette variation, dont la plus grande valeur n'est que d'un trentième, peut, d'abord, être entièrement négligée, sans aucun inconvénient réel, dans une première étude des mouvemens célestes: et la découverte des lois géométriques de ces mouvemens permet, ensuite, d'en tenir compte avec exactitude, dans les cas qui l'exigent.
C'est ainsi que les astronomes convertissent habituellement toutes leurs observations géocentriques en observations héliocentriques. À l'égard des étoiles, nous savons déjà, par l'avant-dernière leçon, que cette transformation, quelque considérable qu'elle doive paraître, est toujours entièrement insensible jusqu'ici: en sorte que, dans l'observation de tous les astres extérieurs à notre monde, il est parfaitement indifférent que le spectateur soit placé sur la terre, ou sur le soleil, ou sur une planète quelconque. Mais, pour l'intérieur de notre système, la parallaxe annuelle doit, évidemment, avoir une valeur très sensible, quelquefois extrêmement grande, et dont il est indispensable de tenir compte, même envers les planètes les plus lointaines.
D'après cette transformation fondamentale, nous pouvons maintenant poursuivre et terminer l'étude géométrique des mouvemens planétaires, déjà ébauchée, à la fin de l'avant-dernière leçon, quant à leurs périodes et aux plans dans lesquels ils s'exécutent, et au sujet de laquelle nous avions dû réserver la partie la plus importante et la plus difficile, la détermination exacte de la vraie figure des orbites et de la manière dont elles sont parcourues. Ces connaissances essentielles une fois acquises, nous pourrons enfin nettement comprendre comment l'astronomie atteint son véritable but définitif, la prévision exacte et rationnelle de l'état de notre système à une époque quelconque donnée. Tel est l'objet de la leçon actuelle.
Dans la première enfance de l'astronomie mathématique, on a dû naturellement regarder les mouvemens des planètes comme exactement uniformes et circulaires. Quoique cette supposition fût, sans doute, appuyée, si ce n'est inspirée, par des considérations métaphysiques et même théologiques sur la perfection de ce genre de mouvemens, convenable à la nature divine des astres, comme les écrits des anciens nous en offrent d'incontestables témoignages, elle n'en était pas moins alors profondément rationnelle. Car, il était indispensable de former à cet égard une hypothèse quelconque pour parvenir graduellement, en la comparant de plus en plus aux observations, à la vraie connaissance des mouvemens célestes, qui n'était point susceptible d'être jamais obtenue d'une manière directe. Or, on ne pouvait, évidemment, adopter une hypothèse plus simple qui, représentant à peu près l'ensemble des premières observations, fût plus aisément susceptible de leur être, ensuite, extrêmement confrontée par la géométrie alors naissante. Telle est la valeur réelle de cette hypothèse fondamentale, qui a d'abord constitué la science astronomique, que nous l'employons encore aujourd'hui, quand nous voulons nous contenter d'une première approximation, toutes les fois, par exemple, que nous ébauchons la théorie d'un nouvel astre.
Mais, par les progrès mêmes que permettait l'usage d'une telle hypothèse, on ne dut pas tarder à reconnaître que les planètes ne demeurent point à des distances invariables du centre de leurs mouvemens, et que leurs vitesses autour de lui ne sont pas constantes. Cette remarque générale dut être surtout hâtée par l'obligation qu'on s'était imposée de placer ce centre sur la terre; car, si l'on eût rapporté les mouvemens au soleil, ces irrégularités eussent été beaucoup moins prononcées, et, par conséquent, bien plus tard constatées. Dès lors, les astronomes grecs imaginèrent, pour représenter les phénomènes, de modifier leur hypothèse fondamentale par deux conceptions principales, dont chacune isolément permettait d'expliquer, jusqu'à un certain point, les irrégularités observées, et qui, surtout, combinées, pouvaient long-temps suffire à cette interprétation, tant que les progrès de la géométrie abstraite ne comportaient pas une confrontation mathématique entièrement rigoureuse. Ces deux hypothèses secondaires sont connues sous les noms d'excentrique, et d'épicycle. La première consiste à placer l'astre central à une certaine distance du centre géométrique des mouvemens circulaires et uniformes; ce qui suffit pour faire varier les rayons vecteurs ainsi que les vitesses angulaires, d'une manière à peu près conforme aux observations, tant que celles-ci n'ont pas atteint un certain degré de précision, et que, en même temps, la théorie du cercle n'a point fait exactement connaître la relation propre de ses coordonnées polaires. Dans la seconde conception, déjà indiquée par la leçon précédente, l'astre est supposé décrire immédiatement avec une vitesse constante la circonférence d'un petit cercle auxiliaire, dont le centre parcourt uniformément l'orbite primitive; d'où résulte une certaine variation nécessaire dans les mouvemens rapportés à l'astre central, même sans le déplacer du centre du cercle principal. Cette seconde hypothèse fournit plus de ressources que la première, puisqu'elle dispose de deux quantités arbitraires, au lieu de la seule excentricité. Elle est, d'ailleurs, beaucoup plus féconde; car, rien n'empêche, à chaque nouvelle découverte d'un défaut d'harmonie avec les observations, de créer un nouvel épicycle, comme l'ont fait effectivement, et au degré le plus abusif, les astronomes du moyen âge. Enfin, les deux hypothèses peuvent, évidemment, être réunies.
À partir de l'époque où l'usage régulier de ces deux conceptions fut devenu dominant, il n'est pas douteux, ce me semble, que la philosophie métaphysique, à laquelle se rattachait l'hypothèse fondamentale, ait considérablement retardé les progrès de la science astronomique. Sans les mystiques chimères de cette philosophie sur la convenance absolue du mouvement circulaire et uniforme à l'égard des astres, on eût certainement tenté beaucoup plus tôt de sortir d'une hypothèse qui, n'ayant, à l'origine, d'autre mérite réel que celui de sa simplicité primitive, avait fini par présenter une complication presque inextricable, par la multiplication graduelle des épicycles successifs. Les inconvéniens de cette complication étaient déjà vivement sentis par tous les astronomes lors de la composition des tables pruténiques, et même à l'époque des tables alphonsines, comme l'indique clairement le mot célèbre et énergique du roi Alphonse. Néanmoins, l'influence prépondérante des préjugés métaphysiques prolongea l'emploi de cette théorie, jusqu'à ce qu'il fût devenu réellement impossible de la suivre davantage, lorsque, vers la fin du seizième siècle, le nombre total des cercles employés à l'explication des mouvemens célestes s'éleva jusqu'à 74, pour les sept astres considérés alors; tandis que, en même temps, les progrès importans que Tycho introduisit dans toutes les observations astronomiques ne permirent plus de représenter suffisamment ainsi les mouvemens planétaires effectifs, malgré la multitude de quantités arbitraires dont les astronomes pouvaient disposer d'après un tel système. C'est ainsi que, même dans les sciences, les hommes ne se déterminent à changer radicalement leurs institutions primitives (surtout quand elles n'ont pas été rationnellement établies), que lorsqu'elles ont enfin complètement cessé de remplir l'office auquel elles étaient destinées, et après que les nombreuses modifications dont on les avait, à cet effet, successivement surchargées, sont évidemment devenues impuissantes.
Tel était l'état de l'astronomie avant le grand rénovateur Képler, qui, le premier après vingt siècles, osa reprendre, de fond en comble, le problème général des mouvemens planétaires, en regardant tous les travaux antérieurs comme non-avenus, et n'adoptant d'autre base générale que le système complet d'observations exactes auquel la vie de son illustre précurseur, Tycho-Brahé, venait d'être si noblement dévouée. Malgré la hardiesse naturelle de son génie, ses écrits nous montrent, dans leur admirable naïveté, combien il avait besoin d'exciter son enthousiasme pour soutenir l'exécution d'une entreprise aussi audacieuse et aussi difficile, quoique si éminemment rationnelle.
Le choix que fit Képler de la planète Mars, pour son système de recherches astronomiques, était extrêmement heureux, à cause de l'excentricité plus prononcée de cette planète, qui devait rendre plus facile à saisir la vraie loi des inégalités. Mercure, à la vérité, est encore plus excentrique; mais la difficulté de l'observer d'une manière assez suivie, ne permettait pas de l'employer.
Il s'agit donc maintenant de considérer directement les trois grandes lois fondamentales, découvertes par Képler au sujet de Mars, et qu'il étendit ensuite à tous les autres mouvemens intérieurs de notre système. L'ordre suivant lequel on les dispose habituellement aujourd'hui n'est point indifférent: c'est celui dans lequel elles servent à fonder la mécanique céleste, comme le montrera la leçon prochaine. Sous le point de vue purement géométrique, les deux premières suffisent pour déterminer complètement le mouvement propre à chaque planète, l'une en réglant sa vitesse à chaque instant, l'autre en fixant la figure de l'orbite. La troisième loi est destinée à établir une harmonie fondamentale entre tous les divers mouvemens planétaires.
Première loi. On avait depuis long-temps remarqué que la vitesse angulaire de chaque planète, c'est-à-dire, l'angle plus ou moins grand décrit, en un temps donné, par son rayon vecteur, augmente constamment à mesure que l'astre s'approche davantage du centre de son mouvement: mais on ignorait entièrement la relation exacte entre les distances et les vitesses. Képler la découvrit, en comparant les deux cas extrêmes du maximum et du minimum de ces quantités, où leur vraie liaison devait être, en effet, plus sensible. Il reconnut ainsi que les vitesses angulaires de Mars, à son périhélie et à son aphélie, sont inversement proportionnelles aux quarrés des distances correspondantes. Cette loi, saisie par son génie dans le simple rapprochement de deux seules observations, fut ensuite vérifiée pour toutes les positions intermédiaires de Mars, et, plus tard, étendue à toutes les autres planètes. Son exactitude a été constatée depuis par l'expérience habituelle de tous les astronomes. Elle est ordinairement présentée sous une autre forme géométrique, imaginée par Képler lui-même. Au lieu de dire que la vitesse angulaire d'une planète quelconque est, à chaque point de son orbite, en raison inverse du quarré de la distance au soleil, on préfère exprimer, plus simplement, que l'aire tracée, en un temps donné et très court, chaque jour par exemple, par le rayon vecteur de la planète, est d'une grandeur constante, quoique sa forme soit variable: ou, en d'autres termes, que les aires décrites croissent proportionnellement aux temps écoulés. Cet énoncé n'est évidemment qu'une heureuse transformation géométrique de l'énoncé primitif. Car, en choisissant un temps assez court pour que le mouvement de l'astre puisse être envisagé comme momentanément circulaire autour du soleil, il est clair que l'aire qu'engendre le rayon vecteur est proportionnelle au produit de la vitesse angulaire par le quarré de la distance; et qu'ainsi la réciprocité des deux facteurs équivaut à l'invariabilité du produit.
En détruisant radicalement la prétendue uniformité des mouvemens célestes, Képler a donc satisfait aux besoins fondamentaux de l'esprit humain en la remplaçant par une analogie du même ordre et plus réelle: la constance n'a plus été dans les arcs décrits, mais dans les aires tracées. On a même judicieusement remarqué à ce sujet que cette loi nouvelle, quoique moins simple en apparence, était, au fond, beaucoup plus favorable pour faciliter la solution effective du problème géométrique des planètes. Car, avec la vraie figure des orbites planétaires, et même en conservant des cercles excentriques, l'égalité des arcs eût, en réalité, bien moins simplifié le travail que ne l'a fait l'égalité des aires.
Seconde loi. La véritable nature des orbites était peut-être moins difficile à découvrir. Car, il suffit essentiellement, à un homme tel que Képler, d'avoir enfin bien senti, d'une manière franche et complète, la nécessité d'abandonner irrévocablement les mouvemens circulaires, ce à quoi l'on conçoit d'ailleurs aisément qu'il n'a pu parvenir tout d'un coup. C'est là qu'on peut apercevoir clairement la funeste influence des préjugés métaphysiques pour entraver la marche de Képler, en le faisant si souvent hésiter, dans ses diverses tentatives, à renoncer définitivement au mouvement circulaire. Mais, cette condition préalable une fois remplie, il était fort naturel d'essayer l'ellipse, la plus simple de toutes les courbes fermées après le cercle, qui n'en est qu'une modification.
La théorie abstraite de cette courbe avait été heureusement poussée assez loin par les géomètres grecs pour qu'il devînt possible de la reconnaître avec certitude dans les orbites planétaires. Il ne pouvait y avoir une longue hésitation sur la place que le soleil devait occuper. Car, on ne pouvait, évidemment, lui assigner que deux positions remarquables, ou le centre, ou l'un des deux foyers. Or, une réflexion générale sur les mouvemens célestes excluait immédiatement le centre, sans avoir besoin d'aucun travail mathématique. Car, dans cette hypothèse, l'orbite présenterait deux périhélies diamétralement opposés, ainsi que deux aphélies; et chaque périhélie serait à quatre-vingt-dix degrés seulement, au lieu de cent quatre-vingt degrés, de chaque aphélie, ce qui est trop manifestement contraire à l'ensemble des observations, même les plus grossières, pour pouvoir être un seul instant supposé. Voilà comment Képler, en adoptant les orbites elliptiques, fut nécessairement conduit à placer le soleil au foyer, pour toutes les planètes à la fois. Quand son hypothèse eut été ainsi bien formée, il devint aisé d'en constater la justesse, en la comparant aux observations, par des calculs dont tous les principes étaient posés d'avance.
Telle est donc la seconde loi de Képler: les orbites planétaires elliptiques, ayant le soleil pour foyer commun. Les excentricités sont toujours fort petites pour les planètes proprement dites, excepté à l'égard de deux des quatre planètes télescopiques, dans lesquelles la distance des foyers s'élève jusqu'à un quart du grand axe. Cette belle loi fut long-temps méconnue par la plupart des astronomes, même de ceux qui sentaient vivement la nécessité d'abandonner les mouvemens circulaires, et qui faisaient, à cet effet, dans une autre direction que Képler, d'infructueuses tentatives. Dominique Cassini lui-même, plus d'un demi-siècle après, eut la malheureuse idée de remplacer l'ellipse de Képler par une courbe du quatrième degré, grossièrement semblable, en certains cas, à l'ellipse, et dans laquelle le produit des distances aux deux foyers, au lieu de leur somme, reste invariable 9. Mais, l'expérience journalière de tous les astronomes a démontré depuis combien était exacte la découverte de Képler, qui d'ailleurs, avait déjà donné à cet égard les preuves les plus irrécusables, en construisant, d'après ses deux premières lois, les célèbres tables rudolphines, qui représentaient l'ensemble des observations avec bien plus de précision que toutes les tables antérieures.
Troisième loi. Les deux lois précédentes déterminent entièrement la course de chaque planète, considérée séparément, d'après le petit nombre de constantes nécessaires pour la caractériser. Mais, les mouvemens des diverses planètes autour du foyer commun restaient encore complètement isolés les uns des autres, toutes ces constantes paraissant avoir des valeurs essentiellement arbitraires. Képler, qui, de tous les hommes peut-être, a possédé au plus haut degré le génie analogique, chercha (ce que les anciens n'avaient jamais tenté, même grossièrement) à établir entre tous ces mouvemens si différens, une certaine harmonie exacte et fondamentale. Tel est l'objet de sa troisième loi.
Plusieurs philosophes ont pensé (et j'avoue l'avoir d'abord cru moi-même), que les vagues conceptions de la métaphysique sur les harmonies mystiques de l'univers n'avaient pas été inutiles à cette sublime découverte, en excitant les recherches de Képler sur la relation entre les temps périodiques des diverses planètes et leurs moyennes distances. Mais, en examinant plus profondément ce point intéressant de l'histoire de l'esprit humain, il est aisé, ce me semble, de se convaincre du contraire. Long-temps avant Képler, la philosophie métaphysique avait entièrement cessé d'avoir, en astronomie, aucune utilité réelle. Elle n'eût pu servir, en cette occasion, qu'à soutenir la constance de ses travaux, par la persuasion préalable de l'existence certaine d'une harmonie quelconque à cet égard. Or, sous ce rapport, elle était complètement inutile, puisque beaucoup d'astronomes avaient déjà remarqué que les révolutions planétaires sont toujours d'autant plus lentes que les orbites ont plus d'étendue, ce qui suffisait, évidemment, à Képler, pour motiver, à ce sujet, une recherche mathématique. Il est clair, au contraire, que les considérations métaphysiques ont considérablement retardé sa marche, en lui faisant chercher avec une longue obstination, des harmonies qui ne pouvaient avoir aucune réalité. En suivant d'abord la direction positive, comme il finit par le faire, après s'être si long-temps égaré dans ces recherches chimériques, sa découverte n'eût certainement point exigé dix-sept ans de travaux assidus. Ayant préalablement reconnu que les temps périodiques des diverses planètes croissent plus rapidement que leurs moyennes distances au soleil, il suffisait d'essayer successivement, parmi les diverses puissances du demi-grand axe, celle à laquelle la durée de la révolution devait être proportionnelle. L'ensemble des données du problème excluait d'abord les puissances entières, en montrant que les temps périodiques croissent moins rapidement que les quarrés des moyennes distances. Képler était ainsi naturellement conduit à essayer l'exposant 3/2, le plus simple de tous les exposans entre 1 et 2. C'est par là qu'il découvrit enfin que les quarrés des temps des révolutions sidérales de toutes les diverses planètes sont exactement proportionnels aux cubes des demi-grands axes de leurs orbites: loi que les observations postérieures ont toujours entièrement confirmée. On voit que les conceptions métaphysiques furent, en réalité, parfaitement étrangères à sa découverte, et que, loin d'y guider Képler, elles l'en détournèrent long-temps.
Outre la destination fondamentale de cette grande loi pour la mécanique céleste, comme nous l'indiquerons dans la leçon suivante, elle présente évidemment, en géométrie céleste, cette importante propriété directe, de permettre de déterminer, l'un par l'autre, le temps périodique et la moyenne distance de toutes les diverses planètes, quand ces deux élémens ont été d'abord bien observés à l'égard d'une seule planète quelconque. C'est ainsi, par exemple, qu'on a pu évaluer très promptement la durée de la révolution d'Uranus, une fois que sa distance au soleil a été mesurée, sans avoir besoin d'attendre l'accomplissement si lent d'une révolution entière, qui a seulement servi plus tard à confirmer le résultat primitif. De même, en sens inverse, si l'on venait à découvrir quelque nouvelle planète très rapprochée du soleil, il suffirait d'observer la durée très courte de sa révolution sidérale, pour en conclure immédiatement la valeur de sa distance, dont la détermination directe serait alors embarrassante. Les astronomes font continuellement usage de cette double faculté, que la troisième loi de Képler leur a procurée.
Telles sont les trois lois générales qui serviront éternellement de base à la géométrie céleste pour l'étude rationnelle des mouvemens planétaires, et qui régissent aussi, exactement de la même manière, les mouvemens des satellites autour de leurs planètes, en plaçant l'origine des aires ou le foyer de l'ellipse au centre de la planète correspondante. Depuis que l'admirable génie de Képler nous les a dévoilées, le nombre total des astres de notre monde, sans même y comprendre les comètes, a plus que triplé; et cette multiplicité d'épreuves aussi inattendues n'a fait que confirmer successivement de plus en plus leur profonde justesse. Leur ensemble a réduit toute notre détermination des mouvemens de translation de ces corps, à un simple problème de géométrie (dont les difficultés abstraites sont d'ailleurs considérables), qui n'emprunte plus à l'observation directe que les données fondamentales strictement indispensables: ce qui a imprimé à l'astronomie un caractère profondément rationnel. Ces données sont, pour chaque astre, au nombre de six: 1º. deux, déjà envisagées dans la vingt-unième leçon, relativement au plan de l'orbite, déterminé habituellement par la longitude de l'un ou l'autre noeud, et par l'inclinaison à l'écliptique; 2º. la longitude du périhélie, qui fixe la direction de l'orbite dans son plan; 3º. le rapport de la distance focale au grand axe, qui caractérise la forme de l'ellipse décrite; 4º. la moyenne distance au soleil, c'est-à-dire le demi-grand axe de cette ellipse, qui définit entièrement sa grandeur; 5º. enfin, la durée de la révolution sidérale, indiquant suffisamment la vitesse moyenne de l'astre. Nous devons regarder, dans cette leçon, tous ces élémens fondamentaux comme rigoureusement constans, l'étude des légères variations qu'ils subissent progressivement étant le principal objet définitif de la mécanique céleste, quoique plusieurs aient d'abord été appréciées, avec plus ou moins d'exactitude, par la simple observation directe. D'après ces élémens, il suffit de connaître une seule position de chaque astre, pour que toute sa course se trouve être géométriquement définie: ce que les astronomes font ordinairement, en se bornant à indiquer la longitude de l'astre à une époque donnée.
Quoiqu'il soit évident, en thèse générale, que l'étude des mouvemens intérieurs de notre monde est ainsi entièrement tombée sous le ressort de la géométrie abstraite, il n'en est pas moins indispensable de considérer ici la nature spéciale de ce grand problème géométrique, suivant les principaux cas généraux qu'il doit présenter, sans entrer d'ailleurs dans aucun détail de solution, incompatible avec l'esprit et la destination de cet ouvrage. Il faut distinguer, à cet effet, trois cas essentiels, que je range ici dans l'ordre astronomique de leur difficulté croissante: le cas des planètes proprement dites, celui des satellites, et enfin celui des comètes. Nous devons nous borner ici à caractériser nettement les différences essentielles que présente à cet égard le problème général de la géométrie céleste. En outre, on doit reconnaître préalablement que, par sa nature, ce problème se décompose toujours en deux questions distinctes, inverses l'une de l'autre: 1º. étant donnés les élémens astronomiques de l'orbite, déterminer tout ce qui concerne la course entière de l'astre, ce qui est la recherche la plus ordinaire à l'égard des astres anciennement connus; 2º. réciproquement, comme on doit surtout le faire envers tout astre nouvellement étudié, trouver les valeurs de tous ces divers élémens, d'après l'observation d'une partie suffisamment étendue de la course de l'astre. Il importe fort peu d'ailleurs laquelle de ces deux questions essentielles sera placée avant l'autre.
Problème des planètes. La difficulté bien moindre que présente l'étude géométrique des mouvemens des planètes proprement dites résulte uniquement de la faible excentricité de leurs orbites, et de la petite inclinaison des plans correspondans, seuls caractères essentiels qui, aux yeux des astronomes, les distinguent réellement des comètes. Ces deux circonstances caractéristiques facilitent beaucoup la solution précise du problème, en permettant, dans les divers développemens analytiques qu'elle exige, de s'en tenir aux premières puissances des inclinaisons et des excentricités. En même temps, sous le point de vue mécanique, les perturbations étant, en général, comme nous le verrons, bien plus petites, par une suite nécessaire de ces mêmes conditions, on conçoit que la solution doit naturellement avoir plus d'exactitude.
En supposant d'abord que tous les élémens astronomiques de la planète soient donnés, il est clair que, partant d'une position connue, on pourra calculer, par la combinaison des deux premières lois de Képler, en quel lieu se trouvera l'astre à telle époque, ou, au contraire, en combien de temps il se transportera de telle situation à telle autre. La difficulté consiste essentiellement dans cette question relative à la théorie de l'ellipse: trouver l'angle compris entre deux rayons vecteurs qui forment un secteur elliptique dont l'aire est donnée, ou, réciproquement, passer de l'angle à l'aire. Ce problème fondamental, si justement désigné sous le nom de Problème de Képler, ne peut être résolu que par approximation dans l'état présent de l'analyse mathématique, car il dépend d'une intégration qu'on ne sait point jusqu'ici effectuer en termes finis. Les astronomes emploient encore, à cet égard, des transformations géométriques essentiellement semblables à celles imaginées par Képler.
Une ellipse, dont le foyer est donné, étant suffisamment déterminée par trois quelconques de ses points, il est clair, en considérant maintenant la question inverse, que trois positions exactement observées d'une planète, doivent permettre de remonter à la connaissance de tous ses élémens astronomiques. Cette seconde recherche générale est susceptible d'une solution parfaitement rigoureuse, quoique, d'ailleurs, elle exige des calculs fort compliqués. L'orbite une fois géométriquement définie, la simple comparaison de l'aire comprise entre deux des trois rayons vecteurs primitifs, avec le temps employé par l'astre à passer de l'un à l'autre, suffira pour faire connaître, d'après la première loi de Képler, la durée totale de sa révolution, ce qui complétera la solution. Ici se reproduit d'ailleurs, dans l'évaluation de cette aire, la difficulté fondamentale du problème de Képler.
En principe, trois positions quelconques sont strictement suffisantes. Mais il est d'abord évident que, la solution étant fondée sur la différence de ces positions, les résultats seraient trop incertains si l'on ne mettait point, entre les trois observations successives un notable intervalle, dont la valeur doit naturellement augmenter à mesure qu'il s'agit d'une planète plus lointaine. En second lieu, il est indispensable de connaître un plus grand nombre de positions suffisamment distinctes, au moins cinq ou six, afin de se procurer des moyens de vérifier et de rectifier les premiers résultats par les diverses combinaisons ternaires des observations effectuées, dont le degré d'accord mesurera l'exactitude de l'opération.
Cette double nécessité entraînant le besoin d'un temps plus ou moins considérable, et, en certains cas, très long, pour l'exacte détermination définitive d'une orbite planétaire, les astronomes ont senti l'importance d'employer d'abord provisoirement, comme guide général de leurs observations, l'antique hypothèse du mouvement circulaire et uniforme, dans toute sa simplicité primitive, qui présente le précieux avantage de pouvoir être beaucoup plus facilement calculée, d'après deux positions seulement, contrôlées, tout au plus, si on le juge à propos, par une troisième. On peut même avant tout, ce qui est encore plus simple, commencer par regarder, pendant un temps très court, la route de l'astre comme rectiligne; et les astronomes l'ont fait quelquefois avec succès, pour discerner tout d'un coup, surtout envers un astre nouveau, dans quelle partie du ciel il doit être observé prochainement. Mais, c'est seulement lorsqu'on se borne à des procédés graphiques, qui suffisent à un tel but, que cette hypothèse peut être utilement employée. Quant aux calculs, l'hypothèse circulaire méritera seule d'être considérée, puisqu'elle s'y adapte avec presque autant de facilité, et que, d'ailleurs, elle représente infiniment mieux le vrai mouvement, pour une bien plus grande portion de la course totale. Quoi qu'il en soit, on voit clairement par là que l'astronomie moderne, en détruisant sans retour les hypothèses primitives, envisagées comme lois réelles du monde, a soigneusement maintenu leur valeur positive et permanente, la propriété de représenter commodément les phénomènes quand il s'agit d'une première ébauche. Nos ressources à cet égard sont même bien plus étendues, précisément à cause que nous ne nous faisons aucune illusion sur la réalité des hypothèses; ce qui nous permet d'employer sans scrupule, en chaque cas, celle que nous jugeons la plus avantageuse.
Problème des satellites. Les lois de Képler, dans leur application aux satellites, ne concernent que les mouvemens relatifs de chaque satellite autour de sa planète, envisagée comme immobile. Ainsi, la difficulté supérieure du problème des satellites a évidemment pour cause fondamentale la nécessité de tenir compte du déplacement continuel du foyer de leurs orbites elliptiques, si l'on veut réellement parvenir à représenter par des tables effectives la suite de leurs positions, comme les astronomes l'ont toujours finalement en vue dans leurs travaux. À cela près, et la course de la planète correspondante étant préalablement connue, la marche générale de la solution est d'ailleurs entièrement analogue, dans l'une et l'autre des deux questions inverses, à celle ci-dessus caractérisée, puisque les mêmes circonstances essentielles, de la petitesse des excentricités et des inclinaisons, se reproduisent ici. Mais cette mobilité du foyer de l'ellipse décrite doit nécessairement compliquer beaucoup la recherche, en regardant même, ainsi qu'il convient à la leçon actuelle, tous les élémens astronomiques comme constans, quoique leurs variations soient bien plus prononcées qu'à l'égard des planètes. Heureusement l'extrême rapidité de la circulation des satellites compense un peu, dans la plupart des cas, cet accroissement général de difficulté, en permettant de déterminer, par des observations immédiates fréquemment renouvelées, leurs principaux élémens. La première approximation, qui consiste ici, en regardant d'ailleurs le mouvement comme toujours circulaire et uniforme, à négliger entièrement le déplacement de la planète pendant l'accomplissement d'une révolution entière, est peut-être même plus facile alors qu'en aucun autre cas.
La difficulté fondamentale du problème des satellites doit, évidemment, présenter des degrés très inégaux, à raison de la disproportion plus ou moins grande entre le temps périodique de chaque satellite et celui de la planète correspondante. Si l'on compare, par exemple, le premier satellite d'Uranus avec le dernier satellite de Jupiter, on voit que celui-ci emploie deux fois plus de temps que l'autre à faire le tour de sa planète, qui, d'un autre côté circule autour du soleil sept fois plus rapidement. Il y aura donc, sans doute, beaucoup moins d'inconvénient à traiter le premier comme s'il tournait autour d'un foyer immobile; et, lorsqu'on voudra tenir compte du déplacement, son influence réelle étant bien moindre, on obtiendra par des calculs moins pénibles le même degré d'approximation. Aucun cas ne présente à cet égard, par sa nature, autant de difficultés que celui de la lune, dont la théorie a toujours fait, même sans compter les perturbations, le plus grand embarras des astronomes, et dont cependant l'étude exacte nous importe davantage que celle de tout autre satellite. Il est clair, en effet que, le temps périodique de la lune étant seulement treize fois moindre environ que celui de la terre, le déplacement de la planète a ici une extrême influence sur les positions successives du satellite. La disproportion des deux mouvemens est infiniment supérieure envers tous les autres satellites.
Problème des comètes. Les comètes ne se distinguent essentiellement des planètes proprement dites, comme je l'ai indiqué plus haut, que par la très grande excentricité de leurs orbites, et les inclinations presque illimitées des plans qui les contiennent. La petitesse si prononcée et si constante de leurs masses, indiquée par la mécanique céleste, n'est pas même un caractère vraiment exclusif, puisque les quatre planètes télescopiques n'ont point probablement des masses supérieures à celles de presque toutes les comètes. Toutes les autres circonstances, et surtout celles qui attirent principalement l'attention vulgaire à l'égard des comètes, sont secondaires et accidentelles, et manquent d'ailleurs dans plusieurs de ces corps, outre qu'elles ne sauraient exercer aucune sorte d'influence sur leur étude astronomique. C'est même de l'extrême excentricité des orbites cométaires, comparée à la faible excentricité des orbites planétaires, que doit résulter l'ensemble des différences les plus importantes entre les planètes et les comètes quant à leur constitution physique et chimique, essentiellement fixe, d'après cela, dans les premières, et, au contraire, éminemment variable dans les dernières. Les philosophes qui ont regardé les comètes comme habitables n'ont point suffisamment considéré, ce me semble, l'influence physiologique de cette distinction fondamentale. D'après tout ce que nous connaissons de positif jusqu'ici sur les lois de la vie, son existence doit être jugée radicalement incompatible avec une aussi énorme variation dans l'ensemble des circonstances extérieures, sous les rapports thermométriques, hygrométriques, barométriques, et probablement électriques et chimiques, que celle qui doit nécessairement avoir lieu lors du passage, quelquefois très rapide, d'une comète de son périhélie à son aphélie ou réciproquement.
On conçoit aisément, du point de vue astronomique, la difficulté nouvelle que doivent introduire, dans l'étude des mouvemens, ces deux caractères essentiels des comètes, si peu intéressans en apparence. Indépendamment des perturbations bien plus grandes qui en sont la suite nécessaire, et que nous ne devons point considérer encore, il est clair que l'obligation de ne rien négliger, à l'égard des excentricités et des inclinaisons, doit rendre les calculs purement géométriques presque inextricables dans l'exécution, quoique d'ailleurs la théorie soit entièrement semblable à celle des planètes. Il est remarquable toutefois que, même dans ce cas, l'hypothèse circulaire puisse être encore réellement employée pour diriger les premières observations, quoiqu'il faille évidemment la restreindre à un temps beaucoup plus court. C'est par l'emploi de cette hypothèse, à laquelle Tycho s'était borné, qu'il démontra, le premier, contrairement à tous les préjugés philosophiques, que les comètes sont de véritables astres, aussi réguliers dans leur cours que les planètes elles-mêmes, quoique d'une étude plus difficile, après qu'il eut d'abord établi, par l'évaluation grossièrement approchée de leurs distances, qu'on ne saurait y voir des météores atmosphériques.
Mais, la première ébauche de la théorie des comètes se fait essentiellement aujourd'hui à l'aide d'une nouvelle hypothèse, imaginée par Newton, et qui leur est spécialement adaptée, à raison même de la forme très allongée de leurs orbites elliptiques. C'est l'hypothèse parabolique, qui, moins simple sans doute que l'hypothèse circulaire, représente nécessairement beaucoup mieux la course de l'astre, jusqu'à une assez grande distance de son périhélie. On conçoit, en effet, que l'ellipse d'une comète, vu sa grande excentricité, doit peu s'écarter, depuis son périhélie jusqu'à environ quatre-vingt-dix degrés de là, de la parabole qui aurait le même sommet et le même foyer: c'est seulement plus loin que la distance des deux courbes devient de plus en plus considérable, et bientôt immense, quelque allongée que puisse être l'ellipse. La parabole peut donc suffisamment correspondre aux positions effectives de l'astre pendant cette première partie de sa course, dont elle simplifie extrêmement l'étude, d'après l'ensemble des propriétés géométriques de cette courbe, bien plus facile à traiter que l'ellipse. Cette substitution provisoire est d'autant plus heureuse, qu'elle convient précisément à la seule portion qui intéresse vivement la curiosité publique, l'astre n'étant plus ordinairement assez éclairé, lorsqu'il s'écarte davantage du soleil, pour être visible de la terre à l'oeil nu.
Pour employer une telle hypothèse, il suffit évidemment, d'après la nature de la parabole, d'avoir observé la comète dans deux positions différentes, comme s'il s'agissait du cercle. On en déduit alors géométriquement tous les élémens ordinaires, sauf bien entendu, le temps périodique, et le grand axe étant remplacé par la distance du sommet au foyer. Ce sont ces cinq élémens qui servent aux astronomes de signalement ordinaire pour reconnaître ou distinguer les comètes dans leurs apparitions successives, quoique les variations considérables qu'ils sont susceptibles d'éprouver en réalité puissent souvent induire en erreur à ce sujet, et qu'elles aient probablement conduit en effet à multiplier beaucoup trop le nombre des comètes. Enfin, le problème de Képler, qui comporte alors une solution rigoureuse et même facile, déterminant l'aire décrite pendant l'intervalle connu des deux observations primitives, achève de régler tout ce qui concerne la course de l'astre, en faisant apprécier sa vitesse, ce qui permet dès lors à nos calculs de le devancer dans toutes ses positions successives, jusqu'aux limites naturelles de l'hypothèse parabolique.
C'est dans cet esprit que la théorie géométrique des comètes est habituellement traitée; car, sur le très grand nombre de comètes actuellement connues et paraboliquement caractérisées, il n'y en a pas dix dont les orbites elliptiques soient jusqu'ici bien établies, tant est extrême la difficulté mathématique de la solution rigoureuse. Néanmoins, sans la théorie elliptique on ne saurait, évidemment, atteindre à la partie la plus intéressante de cette recherche, la prévision exacte des retours, d'après l'évaluation du temps périodique. Il faut même reconnaître, à cet égard, que la durée de la révolution sidérale constitue le trait le plus caractéristique, et peut-être le seul vraiment décisif, du signalement d'une comète; car, malgré les perturbations dont cet élément est aussi susceptible, il varie beaucoup moins que les divers élémens paraboliques.
On conçoit, par cet ensemble de considérations, quelle est jusqu'ici l'imperfection nécessaire de la théorie des comètes, comparée à celle des planètes.
Tels sont, dans leurs caractères essentiels, les trois cas généraux que présente l'application des lois de Képler au problème fondamental de la géométrie céleste. C'est ainsi que l'astronomie a pu parvenir à assigner mathématiquement, pour la suite entière des temps, ou futurs ou passés, la position qu'occupe, en un instant donné, l'un quelconque des divers astres qui composent le système solaire dont nous faisons partie. D'après ces déterminations fondamentales, il devient aisé de comprendre, en thèse générale, comment tous les phénomènes secondaires qui peuvent résulter de la situation mutuelle de plusieurs de ces corps ont dû être exactement calculés et prévus, d'une manière entièrement rationnelle. Les principaux de ces aspects sont les éclipses de diverses sortes, qu'entraîne naturellement le passage de ces astres les uns devant les autres par rapport à nous. L'exactitude et la rationnalité de leur prévision ont toujours été le critérium évident et décisif d'après lequel la perfection effective des théories astronomiques est devenue facilement appréciable, même par le vulgaire, puisqu'un tel résultat suppose nécessairement une profonde connaissance réelle des lois géométriques que suivent, dans leurs mouvemens, les deux ou les trois astres qui concourent au phénomène. À la vérité, tous les événemens célestes sont, par leur nature, essentiellement périodiques, puisque les orbites sont toujours nécessairement des courbes fermées. Ainsi, la notion empirique et grossière de quelques périodes qui reproduisent à peu près certains genres d'éclipses, a pu devenir, dès la première enfance de l'astronomie, un moyen direct de prédiction fort imparfait; ce qui a souvent trompé les érudits sur l'étendue des connaissances de quelques castes antiques, quoique cela ne supposât essentiellement d'autre découverte que celle d'une écriture quelconque pour tenir registre des événemens observés. Mais, il ne saurait évidemment être question ici de ce procédé anti-géométrique, fondé sur des périodes très mal observées à l'origine, et d'ailleurs réellement variables, qui pourrait tout au plus indiquer vaguement, même aujourd'hui, le jour de l'événement. Il s'agit uniquement de prédictions vraiment mathématiques, qui n'ont pu commencer que dans l'immortelle école d'Alexandrie; et dont le degré de précision, à l'heure, à la minute, et enfin à la seconde, représente fidèlement en effet les grandes phases historiques du perfectionnement graduel de l'ensemble de la géométrie céleste. Voilà ce qui, abstraction faite de toute application à nos besoins, fera toujours, de l'observation des éclipses, un spectacle aussi intéressant pour les vrais philosophes que pour le public lui-même, et par des motifs que la propagation de l'esprit positif rendra, j'espère, de plus en plus, essentiellement analogues, quoique inégalement énergiques.
Indépendamment de la haute utilité pratique de cette classe générale de phénomènes au sujet du grand problème des longitudes, quelques-uns d'entre eux sont devenus, depuis un siècle, susceptibles d'une destination scientifique fort importante, en fournissant, comme je l'ai annoncé dans l'avant-dernière leçon, les meilleurs moyens de déterminer avec exactitude la distance du soleil à la terre, donnée si indispensable à toute notre astronomie.
Quand le soleil est plus ou moins éclipsé par un astre quelconque, soit qu'il s'agisse d'une éclipse très apparente, comme celles que produit la lune, soit, au contraire, que le phénomène se réduise à obscurcir un seul point du disque solaire, d'une manière imperceptible à l'oeil nu, comme lors des passages de Vénus ou de Mercure entre le soleil et nous, l'observation de ces phénomènes, dont la théorie est, dans tous les cas, essentiellement identique, peut nous conduire à apprécier, plus exactement que par aucune autre voie, la parallaxe relative de cet astre et du soleil, et par suite la distance du soleil lui-même, d'après la différence, soigneusement mesurée, que doit présenter la durée totale du phénomène aux divers observatoires de notre globe. Considérons, en effet, que la théorie a d'abord déterminé cette durée pour le centre de la terre, qui verrait l'astre décrivant une certaine corde du disque solaire. Dès lors, par l'effet de la parallaxe, qui abaisse inégalement les deux astres, l'observateur situé à la surface du globe verra décrire une corde différente, ce qui changera la durée effective du phénomène. Or, dans les cas ordinaires, cet effet se trouvera nécessairement inverse pour deux lieux situés de part et d'autre de l'équateur terrestre. Car, si la parallaxe relative rapproche la corde du centre du disque, à l'égard de l'un de nos hémisphères, et, conséquemment, augmente la durée mathématique du passage, elle l'en éloignera, au contraire, et diminuera cette durée, envers l'hémisphère opposé. Il y aura donc, sous ce rapport, une différence très appréciable entre deux lieux distincts, convenablement choisis parmi ceux qui permettent d'apercevoir le phénomène, et surtout d'un hémisphère à l'autre. Cette différence constatée, ne dépendant, évidemment, que de la parallaxe relative et de la vitesse angulaire, déjà bien connue, de l'astre considéré, conduira à l'évaluation de la première de ces deux quantités et, par suite, de la parallaxe horizontale du soleil.
Tous les astres susceptibles de passer entre le soleil et nos yeux ne sont pas, à beaucoup près, également propres à une telle détermination. Il faut d'abord que la parallaxe relative ne soit pas trop considérable, afin que l'influence propre à la parallaxe solaire ne s'efface point, pour ainsi dire, vis-à-vis de celle de l'astre, dont la distance à la terre serait alors insuffisante à nous servir de base dans l'exacte évaluation de l'éloignement du soleil. D'un autre côté, cette parallaxe relative serait elle-même trop mal connue si elle ne surpassait pas notablement la parallaxe du soleil, qu'il vaudrait alors presque autant déterminer d'une manière directe; et d'ailleurs la différence des durées serait trop peu prononcée. Enfin, il faut aussi que le mouvement angulaire de l'astre soit assez lent, pour que, le phénomène se prolongeant long-temps, cette différence doive être très sensible.
Parmi les trois seuls astres connus qui puissent ainsi éclipser le soleil, l'ensemble de ces motifs exclut, évidemment, la lune, et même Mercure, en sorte qu'il ne reste que Vénus. La parallaxe, dans une telle position, offre les proportions convenables, étant presque triple de celle du soleil; et la vitesse angulaire est assez petite pour que le phénomène, dont la durée totale est de six à huit heures, puisse présenter des différences de vingt minutes au moins entre deux observatoires bien choisis. Telle est la belle méthode imaginée par Halley, et pratiquée plus tard par divers astronomes. Le degré de précision du résultat se trouve, évidemment fixé d'après les considérations qui précèdent.
J'ai cru devoir caractériser nettement cette application de la théorie géométrique des mouvemens célestes, à cause de son extrême importance pour le système entier de la science astronomique. Mais, il serait contraire à la nature de cet ouvrage d'y considérer spécialement aucune autre de ces questions secondaires, quelque grande que puisse être, d'ailleurs, leur utilité pratique.
L'ensemble de ces phénomènes provoque naturellement une remarque philosophique fort essentielle, sur l'opposition nécessaire et de plus en plus prononcée de l'esprit positif contre l'esprit théologique ou métaphysique, à mesure que la géométrie céleste s'est perfectionnée davantage. Le caractère fondamental de toute philosophie théologique est d'envisager tous les phénomènes comme gouvernés par des volontés, et, par conséquent, comme éminemment variables et irréguliers, au moins virtuellement. Au contraire, la philosophie positive les conçoit comme assujettis, à l'abri de tout caprice, à des lois invariables, qui permettent de les prévoir exactement. L'incompatibilité radicale de ces deux manières de voir n'est, aujourd'hui, nulle part plus saillante qu'à l'égard des événemens célestes, depuis qu'on a pu les prévoir complètement et avec la dernière précision. En voyant toujours arriver les comètes et les éclipses, avec toutes les circonstances minutieuses exactement annoncées long-temps à l'avance, suivant les lois que le génie humain a su enfin créer d'après ses observations, le vulgaire lui-même doit être inévitablement entraîné à sentir que ces phénomènes sont soustraits à l'empire de toute volonté, qui n'aurait pu, sans doute, se subordonner aussi complaisamment à nos décisions astronomiques.
Je me suis efforcé de caractériser aussi nettement que possible, dans cette leçon et dans les deux précédentes, le véritable esprit général de la géométrie céleste, envisagée sous ses divers aspects principaux, et en faisant complètement abstraction de toute considération mécanique. Il faut maintenant passer à l'examen philosophique, bien plus difficile et non moins important, de la théorie mécanique dont sont susceptibles aussi les phénomènes astronomiques, en concevant les résultats généraux de leur étude géométrique, si admirablement résumés par les trois lois de Képler, comme autant de faits fondamentaux, propres à nous conduire à une conception supérieure et unique. Cette seconde étude procure de nouvelles déterminations, qui, sans elle, nous seraient nécessairement interdites. Mais, sa principale influence scientifique est de réagir sur le perfectionnement de la géométrie céleste elle-même, en rendant ses théories plus précises, par suite de la liaison sublime qu'elle établit profondément entre tous les phénomènes intérieurs de notre monde, sans aucune exception. C'est ainsi que l'esprit humain en est enfin venu à regarder les lois de Képler elles-mêmes comme une sorte d'approximation, qui n'en conserve pas moins toute l'éminente valeur que nous lui avons assignée ici. Les divers élémens que ces lois supposent constans sont, en réalité, ainsi que j'ai dû déjà l'annoncer, susceptibles d'altérations plus ou moins étendues. La connaissance exacte des lois si complexes de leurs variations, constitue le principal résultat astronomique de la mécanique céleste, indépendamment de sa haute importance directe sous le rapport philosophique.
VINGT-QUATRIÈME LEÇON.
Considérations fondamentales sur la loi de la gravitation.
Beaucoup d'esprits judicieux, auxquels la saine philosophie n'est point étrangère, mais qui n'ont pas une connaissance générale assez approfondie des conceptions mathématiques, se représentent encore l'étude mécanique des corps célestes comme étant nécessairement moins positive que leur étude géométrique; parce qu'ils la confondent, sans doute, avec la recherche inaccessible de l'origine et du mode de production des mouvemens, méprise que les expressions vicieuses trop souvent employées par les géomètres semblent tendre, il est vrai, à autoriser. Cependant, les lois fondamentales du mouvement, quoique plus difficiles à découvrir que celles de l'étendue, et connues bien long-temps après elles, ne sont, incontestablement, ni moins certaines ni moins universelles, ni d'une positivité moins évidente. Comment pourrait-il en être autrement de leur application? Tout déplacement curviligne d'un corps quelconque, d'un astre aussi bien que d'un boulet, peut être étudié sous ces deux points de vue, également mathématiques: géométriquement, en déterminant, d'après les observations directes, la forme de la trajectoire, et la loi suivant laquelle varie la vitesse, comme Képler l'a fait pour les corps célestes; mécaniquement, en cherchant la loi du mouvement qui empêche continuellement le corps de poursuivre sa route naturelle en ligne droite, et qui, combiné à chaque instant avec sa vitesse actuelle, lui fait décrire sa trajectoire effective, dès lors susceptible d'être connue à priori. Ces deux recherches sont, évidemment aussi positives l'une que l'autre, et pareillement fondées sur les phénomènes. Si dans la seconde, on se sert encore quelquefois de termes qui paraissent indiquer une enquête de la nature essentielle et de la cause première des mouvemens considérés, cette habitude blâmable, dernier vestige de l'esprit métaphysique à cet égard, ne doit pourtant pas faire illusion sur le vrai caractère fondamental d'une telle étude.
À la vérité, le cas du boulet et celui de l'astre présentent entre eux cette différence essentielle, que, dans le premier, les deux mouvemens élémentaires dont se compose, à chaque instant, le mouvement effectif, sont préalablement bien connus, ce qui ne saurait avoir lieu dans l'autre cas. Mais, cette circonstance ne fait qu'introduire, dans la théorie mécanique de l'astre, une importante difficulté préliminaire de plus, exactement compensée par la parfaite connaissance géométrique de la trajectoire, qui manque immédiatement pour le boulet. Si la loi fondamentale de la chute des poids n'eût pas été découverte d'après une étude directe, la dynamique abstraite eût pu incontestablement la déduire, d'une manière tout aussi sûre, quoique moins facile, de l'observation des divers phénomènes que présentent les mouvemens curvilignes produits par la pesanteur, qui nous fournissent effectivement la meilleure mesure du coefficient numérique de cette loi. Ce qui serait simplement facultatif à l'égard du boulet, devient forcé à l'égard de l'astre; telle est, au fond, la seule différence réelle entre les deux cas.
La mécanique céleste a donc été fondée sur une base inébranlable, quand, d'après les trois lois de Képler, désormais envisagées comme autant de faits généraux, on est parvenu à déterminer, par les règles de la dynamique rationnelle, la loi relative à la direction et à l'intensité de la force qui doit agir incessamment sur l'astre pour le détourner de sa route tangentielle. Cette loi fondamentale une fois découverte, toutes les recherches astronomiques sont rentrées dans la catégorie ordinaire des problèmes de mécanique, où l'on calcule les mouvemens des corps d'après les forces dont ils sont animés. Telle est la marche admirablement philosophique suivie, avec une si complète persévérance, par le génie du grand Newton. La leçon actuelle doit être essentiellement consacrée au premier ordre de considérations; le second sera l'objet exclusif des deux leçons suivantes.
Pour se conformer rigoureusement à l'exactitude historique, il faut reconnaître, quoique cela n'altère en rien le sublime mérite des travaux de Newton, que la fondation réelle de la mécanique céleste avait été vaguement ébauchée par Képler lui-même, qui parut dignement pressentir la haute destination philosophique des lois géométriques qu'il avait établies. Il poussa, ce me semble, leur interprétation dynamique aussi loin que le permettait alors l'état si imparfait de la science mathématique. Il entrevit, en effet, la relation exacte de sa première loi avec le principe que la direction de la force accélératrice de chaque planète passe continuellement par le soleil, ce qui n'exige que les considérations mathématiques les plus élémentaires. Quant à la loi relative à l'intensité, qui constitue la difficulté essentielle de cette grande recherche, il était absolument impossible de la découvrir à cette époque. Néanmoins, Képler osa la chercher; mais, n'y pouvant suivre la marche positive, il s'abandonna à cette métaphysique qui avait déjà tant entravé ses travaux propres. Il serait superflu de rappeler ici sa chimérique conception des rayons attractifs, par laquelle il tenta de mesurer la force accélératrice des planètes, ni même son rapprochement, moins métaphysique, entre cette force et la pesanteur. Quand même ces considérations vagues et illusoires eussent fait accidentellement deviner la loi véritable, ce qui arriva à Bouillaud en rectifiant le propre raisonnement de Képler à ce sujet, cette circonstance insignifiante ne pouvait faciliter, en aucune manière, la découverte fondamentale de Newton, où il s'agissait réellement d'établir la correspondance mathématique entre la loi des orbites elliptiques ayant le soleil pour foyer, et celle de la variation de la force accélératrice inversement au carré de la distance; ce que de telles tentatives n'avaient nullement en vue. Les vrais précurseurs de Newton, sous ce rapport, sont Huyghens et surtout Galilée, comme fondateurs de la dynamique. Néanmoins, on peut remarquer avec intérêt comment le génie de Képler, après avoir parcouru une aussi belle carrière, en constituant définitivement la géométrie céleste, osa s'élancer aussitôt dans la carrière, toute différente et alors inaccessible, de la mécanique céleste, que la marche générale de l'esprit humain réservait si impérieusement à ses héritiers; succession d'efforts, dont l'histoire des sciences ne présente peut-être, dans tout son ensemble, aucun autre exemple aussi prononcé. Personne, d'ailleurs, ne sent plus profondément que moi la nullité radicale de toute semblable tentative.
Dans un temps où l'on s'efforce chaque jour davantage de rabaisser au niveau des plus médiocres intelligences les plus hautes conceptions du génie humain, il est du devoir de tout vrai philosophe de se prononcer, aussi énergiquement que possible, contre cette tendance déplorable, qui finirait par pervertir, jusqu'en son germe, le développement général de l'esprit positif chez les masses, en leur persuadant que ces découvertes sublimes, qui ont coûté tant d'efforts du premier ordre à la série des hommes les plus éminens dont notre espèce puisse s'honorer, étaient susceptibles d'être simplement obtenues par quelques aperçus vagues et faciles, accessibles, sans aucune préparation laborieuse, aux entendemens les plus vulgaires. Quoiqu'il soit, sans doute, infiniment plus aisé d'apprendre que d'inventer, il faut enfin que le public, pour n'être point livré aux sophistes et vendu aux trafiquans de science, soit profondément convaincu que, comme le simple bon sens l'indique clairement, ce qui a été découvert par le long et pénible travail du génie, la raison commune ne saurait se l'approprier réellement que par une méditation persévérante, précédée d'études convenables. Si, comme il est évident, ces conditions indispensables ne peuvent pas toujours être suffisamment remplies, à l'égard de toutes les vérités scientifiques destinées à entrer dans la circulation générale, n'est-il pas bien préférable de le déclarer avec franchise, et de réclamer directement une confiance, qui n'a jamais été refusée quand elle a été convenablement motivée, au lieu de vouloir lutter contre une difficulté insurmontable, en essayant vainement de rendre élémentaires des conceptions nécessairement transcendantes? Car, les hommes ont encore plus besoin de méthode que de doctrine, d'éducation que d'instruction.
Conformément à ces maximes générales, je ne saurais trop condamner ici les tentatives illusoires et nuisibles qu'on a si fréquemment renouvelées, dans la vulgarisation, d'ailleurs si utile quand elle est sagement conçue et exécutée, des principales notions de la philosophie naturelle, pour rendre indépendante des grandes théories mathématiques la démonstration de la loi fondamentale de la gravitation, d'après des raisonnemens vagues et essentiellement métaphysiques sur les émanations et les attractions, dont l'idée première est empruntée à Képler. Outre le vide profond de ces considérations absolues, il est clair qu'une telle manière de procéder tend à faire radicalement disparaître tout ce qui constitue l'admirable réalité de la découverte newtonienne, sa parfaite harmonie mathématique avec les lois géométriques des mouvemens célestes, seul fondement positif de la mécanique des astres.
Considérons maintenant, d'une manière directe, l'établissement vraiment rationnel de cette conception fondamentale, en réservant à l'analyse transcendante sa grande et indispensable part dans une telle opération.
Il est d'abord évident, comme je l'ai déjà indiqué, que la première loi de Képler prouve, sans aucune incertitude et de la manière la plus simple, que la force accélératrice de chaque planète est constamment dirigée vers le soleil. On n'a pas besoin, pour s'en convaincre, de recourir à la théorie dynamique des aires. Une figure très élémentaire suffit à démontrer, comme l'a fait Newton, que la force accélératrice, quelque énergique qu'on l'imagine, ne saurait altérer en rien la grandeur de l'aire qui serait décrite, en un temps donné, autour du soleil, par le rayon vecteur de l'astre, en vertu de sa seule vitesse actuelle, si sa direction passe exactement par le soleil, tandis qu'elle la changerait inévitablement dans toute autre supposition. Ainsi, la constance de cette aire, première donnée générale de l'observation, dévoile la loi de la direction. La principale difficulté du problème, celle qui fait la gloire essentielle de Newton, consiste donc dans la découverte, d'après les deux autres théorèmes astronomiques de Képler, de la loi relative à l'intensité de cette action continuelle que nous concevons dès lors exercée, sans nous enquérir de son mode, par le soleil sur les planètes.
Dans la première ébauche de sa conception, Newton a pris pour base la troisième loi de Képler, en considérant d'abord les mouvemens comme circulaires et uniformes, ce qui suffisait en commençant. L'action solaire, dès lors égale et contraire à la force centrifuge de la planète, devenait ainsi nécessairement constante aux divers points de l'orbite, et ne pouvait varier qu'en passant d'une planète à une autre. Les théorèmes d'Huyghens sur la force centrifuge dans le cercle, dont la démonstration est presque élémentaire, conduisaient immédiatement à saisir la loi de cette variation. Car, la force centrifuge étant, d'après ces théorèmes, proportionnelle au rapport entre le rayon de l'orbite et le quarré du temps périodique, elle variait évidemment d'un astre à l'autre, inversement au quarré de sa distance au soleil, en vertu de la constance, établie par Képler, du rapport entre le cube de cette distance et ce même quarré du temps périodique, pour toutes les planètes. Telle est la considération mathématique qui mit réellement Newton, à l'origine de ses recherches, sur la voie de cette loi fondamentale, à la simple indication de laquelle ne contribuèrent nullement les raisonnemens métaphysiques antérieurs, dont il n'avait même probablement alors aucune connaissance.
Mais, quelque précieuse que fût l'ouverture donnée par cette première approximation, le noeud essentiel de la difficulté n'en continuait pas moins à subsister dans son intégrité. Car, il fallait surtout expliquer comment cette loi sur la variation de l'action solaire s'accordait avec la nature géométrique des orbites, découverte par Képler. À la vérité, l'orbite elliptique présentait deux points remarquables, l'aphélie et le périhélie, où la force centrifuge était encore directement opposée, et, par conséquent, égale à l'action du soleil, dont le changement devait naturellement y être, en même temps, plus prononcé. La courbure de l'orbite était, évidemment, identique en ces deux points; cette action se trouvait donc simplement mesurée, d'après ces mêmes théorèmes d'Huyghens, par le quarré de la vitesse correspondante. Dès lors, un raisonnement facile déduisait immédiatement de la première loi de Képler, que le décroissement de l'action solaire, du périhélie à l'aphélie, s'opérait encore inversement au quarré de la distance. Ainsi, la loi indiquée par un premier rapprochement entre les diverses planètes, se trouvait pleinement confirmée par une exacte comparaison entre les deux positions principales de chacune d'elles. Mais tout cela était encore évidemment insuffisant, puisque le mouvement elliptique n'était nullement pris en considération. Toute autre courbe que l'ellipse eût incontestablement donné le même résultat, à la simple condition d'avoir, en ses deux sommets, une égale courbure.
Ces deux considérations préliminaires sont, néanmoins, les seules parties de la démonstration qui puissent être rendues vraiment sensibles à toutes les intelligences qui n'ont, en mathématique, que des notions purement élémentaires. Quant à la mesure de l'action solaire dans toute l'étendue de l'orbite, qui constitue la portion essentielle et réellement décisive de cette démonstration, l'analyse transcendante y est absolument indispensable. En continuant à procéder dans le même esprit, c'est-à-dire d'après la comparaison de l'action solaire à la force centrifuge, la première a dès lors besoin d'être décomposée, en un point quelconque, suivant la normale correspondante, avant de pouvoir être appréciée par la seconde, qui ne lui est plus directement antagoniste, et dont l'évaluation exige, d'ailleurs, la théorie exacte de la courbure de l'ellipse. Par l'ensemble de ses découvertes, en géométrie et en mécanique, qu'il lui eût suffi de combiner, le grand Huyghens touchait certainement au principe de cette détermination capitale. Mais enfin, il n'a point eu réellement l'idée de cette combinaison: et, ce qu'on doit surtout remarquer, l'eût-il même conçue, il n'aurait, sans doute, pu la suivre complètement qu'avec le secours de l'analyse différentielle, dont nous savons que Newton est l'inventeur aussi bien que Leïbnitz.
À l'aide de cette analyse, on mesure facilement, et de diverses manières, l'énergie de l'action solaire en tous les points de l'orbite, et l'on reconnaît aussitôt qu'elle varie toujours inversement au quarré de la distance, et qu'elle est indépendante de la direction. Enfin, le même calcul démontre que sa valeur propre pour chaque planète, ramenée, suivant cette loi, à l'unité de distance, est proportionnelle au rapport entre le quarré du temps périodique et le cube du demi-grand axe de l'ellipse; ce qui prouve exactement, d'après la troisième loi de Képler, l'identité de cette valeur à l'égard de toutes les planètes, sur lesquelles l'action du soleil ne change donc qu'en vertu de la seule distance, quelles que soient les grandes différences de leurs dimensions. C'est de là que Newton a déduit cette importante conséquence, qui complète l'établissement de la loi fondamentale, que l'action solaire est, en chaque cas, proportionnelle, à distance égale, à la masse de la planète; de la même manière que, par l'identité de la chute de tous les corps terrestres dans le vide, ou par l'exacte coïncidence de leurs oscillations, on avait déjà constaté évidemment la proportionnalité entre leurs poids et leurs masses.
On voit ainsi comment les trois grandes lois de Képler ont concouru, chacune pour sa part essentielle, à établir exactement, d'après les règles de la mécanique rationnelle, cette loi fondamentale de la nature. La première démontre la tendance continuelle de toutes les planètes vers le soleil; la seconde fait connaître que cette tendance, la même en tous sens, change avec la distance au soleil, inversement à son quarré; enfin, la troisième apprend que cet effort, nullement spécifique, est toujours simplement proportionnel, pour une même distance, à la masse de chaque planète. Il serait sans doute inutile de prévenir expressément que les lois de Képler ayant lieu exactement de la même manière, dans les mouvemens des satellites autour de leurs planètes, il en résulte nécessairement les mêmes conséquences dynamiques pour l'action continue exercée par chaque planète sur chacun de ses satellites, en raison directe de la masse de celui-ci, et en raison inverse du quarré de sa distance à la planète.
Afin de compléter cette démonstration capitale, Newton jugea sagement qu'il devait reprendre, en sens inverse, l'ensemble de la question, en déterminant, à priori, les mouvemens planétaires qui résulteraient d'une telle loi dynamique. C'est ainsi que, par une intégration alors difficile, il retomba complètement sur les lois de Képler, comme cela devait être de toute nécessité. Indépendamment de cette utile vérification mathématique, qui fournit d'ailleurs incidemment quelques moyens de simplifier l'étude géométrique de ces mouvemens, cette analyse inverse fit reconnaître que l'orbite aurait pu être, non-seulement une ellipse, mais une section conique quelconque, ayant toujours le soleil pour foyer. La nature de la courbe dépend uniquement de l'intensité de la vitesse initiale, et nullement de sa direction; en sorte qu'un certain accroissement déterminé, qui surviendrait tout à coup dans la vitesse d'une planète, changerait son ellipse en une parabole, et plus grand encore, en une hyperbole. Ainsi, les orbites devant être, par une nécessité évidente, des courbes fermées, la figure elliptique est donc la seule qui puisse réellement dériver de la loi newtonienne.
Parmi les objections, aussi vaines qu'innombrables, que dut soulever à son origine cette admirable découverte, et que reproduisent encore quelquefois des esprits mal organisés, une seule mérite d'être ici mentionnée, comme tendant à éclaircir la notion fondamentale, et comme ayant beaucoup frappé autrefois, par son apparence très spécieuse, plusieurs philosophes fort recommandables, entre autres le judicieux Fontenelle. Elle est fondée sur la considération que si, pendant une moitié de sa révolution, la planète se rapproche de plus en plus du soleil, elle s'en éloigne évidemment toujours davantage dans l'autre partie de l'orbite; ce qui semble impliquer une contradiction frappante avec l'idée d'une tendance continuelle vers le soleil. L'emploi du malheureux mot attraction, beaucoup trop prodigué par Newton et par presque tous ses successeurs, donnait à cette objection une nouvelle apparence de solidité. Aussi quelques newtoniens n'avaient-ils pas hésité d'abord à recourir, pour la résoudre, à cet expédient absurde, de déclarer l'action solaire tantôt attractive et tantôt répulsive. Laplace lui-même en a donné, ce me semble, une explication peu satisfaisante, puisqu'elle se borne à reproduire, sous un autre point de vue, le fait lui-même, en disant que la planète doit s'approcher du soleil, tant que sa direction forme un angle aigu avec celle de l'action solaire, et s'en éloigner quand cet angle devient obtus. Cette considération exige donc un nouvel examen.
Il faut reconnaître, avant tout, qu'elle ne saurait exercer la moindre influence effective sur les calculs de la mécanique céleste, ce qui explique qu'on s'en soit si peu inquiété. Car il n'importe guère aux géomètres que l'action solaire soit, en réalité, attractive ou répulsive, pourvu que la direction de la force accélératrice de la planète, prolongée s'il le faut, vienne toujours passer exactement par le soleil, ce que la première loi de Képler assure incontestablement. Mais, néanmoins, le doute à cet égard donnerait un caractère trop indécis à la conception fondamentale, pour qu'on ne doive pas le dissiper entièrement.
Afin de mettre l'objection dans un plus grand jour, il convient de considérer le cas hypothétique d'une orbite parabolique ou hyperbolique, qui nous montre l'astre, parti du périhélie, s'éloignant toujours et indéfiniment du soleil, quoiqu'on puisse aisément prouver qu'il ne cesse pas un seul instant de tendre vers lui. En effet, on ne doit point constater cette tendance en comparant la position actuelle de l'astre à celle qu'il occupait auparavant, mais à celle qu'il occuperait au même instant, en vertu de sa seule vitesse acquise, si l'action solaire n'existait pas: c'est évidemment le seul moyen d'apprécier l'influence réelle de cette action. Or, d'après ce principe, on voit clairement qu'elle tend, dans tous les cas, à rapprocher l'astre du soleil, puisqu'il s'en trouve toujours effectivement plus près, même avec une orbite hyperbolique, que s'il eût continué son mouvement naturel suivant la tangente. La vraie solution de l'objection se réduit donc à remarquer que l'orbite est constamment concave vers le soleil: elle serait évidemment insurmontable, si la trajectoire eût pu être convexe. On rencontre ici la même circonstance que dans le mouvement ascensionnel des bombes, que personne ne s'est jamais avisé d'attribuer à une pesanteur suspendue ou renversée: le projectile, quoiqu'il s'élève, ne cesse réellement de tomber, et tombe de plus en plus, comme dans sa chute ordinaire, puisqu'il est continuellement, et toujours davantage, au-dessous du lieu où l'aurait porté sa seule impulsion initiale, la trajectoire étant constamment concave vers le sol.
Dans l'exposition habituelle de la conception fondamentale de la mécanique céleste, on néglige aujourd'hui beaucoup trop de considérer les cas hypothétiques où il faut remonter de telle forme idéale des orbites planétaires à telle autre loi correspondante de l'action solaire, et réciproquement. Ce n'est pas uniquement pour mieux caractériser sa théorie générale des forces centrales, qui eût été suffisamment expliquée par l'analyse exacte du seul cas naturel, que Newton s'est plu à développer avec tant de soin cette importante considération. Il a probablement senti qu'une telle étude devait réfléchir une nouvelle lumière sur le vrai caractère de la loi effective, en faisant ressortir avec plus d'évidence ses conditions essentielles. Rien n'est plus propre surtout à lui ôter cette apparence d'absolu, qui résulte si fréquemment de l'exposition ordinaire, en montrant combien il y aurait peu à changer aux orbites planétaires pour que l'action solaire dût suivre nécessairement une loi toute différente. Je dois me borner ici à mentionner à cet égard le cas le plus remarquable et le plus instructif, parmi tous ceux que Newton a envisagés. C'est celui de l'orbite elliptique, mais dont le soleil occuperait le centre, au lieu du foyer. On trouve alors que l'action solaire, au lieu d'être inversement proportionnelle au quarré de la distance, varierait au contraire en raison directe de la distance elle-même. Il serait impossible d'obtenir une plus grande opposition dans les résultats pour une modification, aussi légère en apparence, à l'hypothèse primitive; et cependant rien n'est mieux démontré. De bons esprits, auxquels la mathématique est étrangère, pourraient même envisager un tel défaut d'harmonie comme devant inspirer d'abord quelques doutes raisonnables sur la réalité de la loi effective, surtout en considérant que, les orbites planétaires étant presque circulaires, il s'en faut de bien peu que le soleil n'en occupe le centre. Mais, j'ai indiqué à dessein dans la leçon précédente, au sujet de la seconde loi de Képler, les principales différences astronomiques des deux orbites, pour montrer que leur opposition réelle, sous le simple point de vue géométrique, est beaucoup plus prononcée qu'elle ne le semble au premier aspect, tellement que jamais les astronomes n'ont pu s'y tromper, quelque petites que soient les excentricités. En appréciant cette comparaison, on reconnaîtra facilement, j'espère, que l'harmonie générale et indispensable entre la considération géométrique et la considération dynamique n'est pas plus altérée dans ce cas hypothétique que dans tout autre. Mais, comme l'idée d'une orbite elliptique autour du soleil pour centre, quelque opposée qu'elle soit à toutes nos observations astronomiques, est fort loin, évidemment, de présenter aucune absurdité intrinsèque, on aperçoit ainsi dans tout son jour la profonde inanité nécessaire de tous les prétendus raisonnemens à priori par lesquels tant d'esprits se sont efforcés d'établir, abstraction faite de l'analyse mathématique des phénomènes exactement explorés, l'impossibilité absolue d'aucune autre loi que celle de Newton, relativement à l'action du soleil sur les planètes 10. Que peuvent donc signifier tous ces vains projets de démonstrations élémentaires, contre lesquels je m'élevais ci-dessus, où l'on ne tient même aucun compte de la forme elliptique des orbites, et où, à plus forte raison, on ne s'est jamais inquiété si le soleil occupe le foyer plutôt que le centre qui en est tout près?
Note 10: (retour) Il est même évidemment impossible, d'après cela, d'expliquer réellement à priori pourquoi un astre tend nécessairement vers le soleil avec d'autant plus d'énergie qu'il en est plus près, quelle que soit d'ailleurs la loi mathématique de cette variation. Car, dans une telle hypothèse, l'action solaire augmenterait, au contraire, quand l'astre serait plus éloigné; en sorte que, s'il, en est autrement, il faut l'attribuer uniquement à ce que le soleil occupe le foyer et non le centre de l'ellipse. Comment oserait-on, dès lors proclamer évident à priori, le décroissement nécessaire de cette action à mesure que la distance augmente, sans aucun égard à cette circonstance caractéristique?
Je me suis jusqu'ici soigneusement abstenu de qualifier, par aucun terme spécial, la tendance continue des planètes vers le soleil, et des satellites vers leurs planètes, dont l'existence et la loi ont été le seul objet des considérations précédentes. Mais, si ces notions suffisent pour que les phénomènes célestes soient désormais parfaitement liés entre eux, et mathématiquement calculables, c'est surtout par une autre propriété essentielle de la conception fondamentale de Newton qu'ils sont réellement expliqués dans le sens propre du mot, c'est-à-dire compris, d'après leur exacte assimilation générale avec les phénomènes si vulgaires que la pesanteur produit continuellement à la surface de notre globe. Examinons maintenant ce complément indispensable donné par Newton à sa sublime pensée.
Si notre planète n'avait aucun satellite, cette comparaison capitale serait évidemment impossible, comme manquant de base. Il eût fallu alors nous contenter de calculer exactement les mouvemens célestes, d'après les règles générales de la dynamique, sans pouvoir jamais les rattacher à ceux qui s'exécutent journellement parmi nous. Quoique l'harmonie universelle de notre monde devînt ainsi infiniment moindre, cette conception n'en serait pas moins extrêmement précieuse. Mais l'existence de la lune nous a rendu l'immense service philosophique de lier intimement la mécanique du ciel à la mécanique terrestre, en nous permettant de constater l'identité de la tendance continue de la lune vers la terre avec la pesanteur proprement dite: ce qui a suffi pour démontrer ensuite que l'action mutuelle des corps célestes n'était autre chose que la pesanteur convenablement généralisée, ou, en sens inverse, que la pesanteur ordinaire n'était qu'un cas particulier de cette action.
Ce rapprochement fondamental est susceptible d'un examen mathématique qui ne saurait laisser aucune incertitude à cet égard. Car, d'après l'analyse dynamique du mouvement de la lune, on connaît l'intensité de l'action que la terre exerce sur elle, c'est-à-dire la quantité dont elle tend à tomber vers le centre de notre globe en un temps donné, une seconde par exemple. En regardant le mouvement comme circulaire et uniforme, ce que Newton a d'abord jugé avec raison pleinement suffisant ici, cette évaluation se fait aisément, d'après la règle d'Huyghens sur la mesure de la force centrifuge; d'ailleurs, on peut aussi l'effectuer, avec un peu plus de peine, en ayant égard au mouvement elliptique et varié. Elle ne dépend que de données parfaitement connues, sur lesquelles il ne peut y avoir aucune hésitation, le temps périodique de la lune, sa distance à la terre, et enfin le rayon de la terre. Cela posé, il suffit d'augmenter cette intensité primitive, inversement au quarré de la distance, suivant la loi fondamentale, pour savoir ce qu'elle deviendrait en supposant la lune placée tout près de la surface de la terre, afin de la confronter avec l'intensité effective de la pesanteur proprement dite, que nous savons être exactement la même dans tous les corps grands et petits, et qui est mesurable, avec la dernière précision, soit par l'observation directe de la chute des poids, soit surtout par les expériences du pendule. L'identité ou la diversité de ces deux nombres, décidera évidemment, en dernier ressort, pour ou contre l'assimilation entre la tendance de la lune vers la terre et la pesanteur. Or, l'exécution d'une telle comparaison établit la parfaite coïncidence des deux résultats; d'où s'ensuit la démonstration mathématique de cette assimilation. Telle est la marche profondément rationnelle suivie à cet égard par Newton, sauf que, pour plus de clarté, j'ai cru devoir l'indiquer en ordre inverse, ce qui est en soi fort indifférent. L'histoire de ce beau travail nous présente une anecdote très intéressante, qui caractérise fortement l'admirable sévérité de la méthode philosophique constamment suivie, avec une si sage énergie, par le grand Newton. On sait que, dans ses premières recherches, il avait employé une valeur erronée du rayon de la terre, déduite d'une mauvaise mesure exécutée un peu avant lui en Angleterre: il en résultait une différence assez sensible entre les deux nombres qui devaient parfaitement coïncider. Newton eut le rare courage philosophique de renoncer, d'après cela seul et pendant long-temps, à cette partie importante de sa conception générale, jusqu'à ce que Picard eût enfin opéré la mesure exacte de la terre, qui permit à Newton de constater la profonde justesse de sa pensée primitive.
Cette identité entre la tendance de la lune vers la terre et la pesanteur proprement dite présente sous un jour tout nouveau l'ensemble de la conception fondamentale de la mécanique céleste. Elle nous montre le mouvement des astres comme parfaitement semblable à celui des projectiles, qui nous est si familier, et que, par cela seul, nous devons trouver suffisamment compris, et propre à servir de type d'explication. La seule différence réelle qu'il y ait entre eux résulte simplement de ce que nos projectiles ne sont pas lancés d'assez loin, ni assez énergiquement, pour que leur inégal éloignement du centre de notre globe puisse manifester l'influence de la variation de la pesanteur inversement au quarré de la distance. Projetés d'un peu plus haut et avec un peu plus de force, ils circuleraient indéfiniment autour de nous comme de petits astres (sauf la résistance de notre atmosphère), ainsi que le fait la lune, ainsi que la terre elle-même et toutes les planètes le font autour du soleil. C'est par là que l'astronomie tout entière est devenue réellement une sorte de problème d'artillerie, beaucoup simplifié par l'absence d'un milieu sensiblement résistant, mais compliqué, à la vérité, par la variation et la pluralité des pesanteurs.
En même temps que la notion mécanique fondamentale des mouvemens célestes se trouvait ainsi considérablement éclaircie par l'assimilation de la force qui les produit à la pesanteur ordinaire, la conception générale de celle-ci a éprouvé, par une heureuse réaction nécessaire, un immense perfectionnement, puisque la loi de sa variation, imperceptible dans les phénomènes terrestres habituels, a été dès lors immédiatement connue. L'homme avait conçu jusque là le poids d'un corps comme une qualité rigoureusement inaltérable, suivant les expériences les plus diverses et les plus précises, que ni le changement de forme, ni le passage d'une constitution physique à une autre, ni aucune métamorphose chimique, ni la différence même entre l'état de vie et l'état de mort, ne pouvaient nullement modifier, tant que l'intégrité de la substance était maintenue. C'était, en un mot, la seule notion qui pût présenter, même aux philosophes les plus positifs, un véritable caractère d'absolu. Ce caractère, qui devait sembler si indestructible, la conception newtonienne est venue l'effacer entièrement d'un seul trait, en montrant, avec une pleine évidence, que le poids d'un corps est au contraire un phénomène purement relatif, non pas il est vrai aux diverses circonstances dont on avait jusque alors analysé l'influence, et qui effectivement ne l'altèrent en rien, mais à une autre à laquelle on n'eût jamais pensé sans cela, tant elle eût paru devoir être insignifiante, et qui seule le règle souverainement, la simple position de ce corps dans le monde, ou, plus exactement, sa distance au centre de la terre, indépendamment de la direction, au quarré de laquelle il est toujours inversement proportionnel. Sans doute, une connaissance aussi opposée à l'ensemble des idées humaines n'aurait pas même été jamais cherchée directement, si la mécanique céleste ne l'eût, pour ainsi dire, involontairement établie d'une manière invincible, en prouvant l'identité mathématique de la pesanteur avec la force accélératrice des astres, à l'égard de laquelle une telle loi de variation devenait incontestable et évidente. Ainsi avertis, les physiciens ont pu vérifier ensuite, par des expériences directes et irrécusables, en s'écartant plus ou moins du centre de la terre, soit dans le sens vertical, soit surtout dans le sens horizontal, la réalité de cette loi, même à la surface de notre globe, où les différences qu'elle engendre sont trop délicates à constater pour qu'on eût jamais pu les apprécier, si l'on n'eût pas été certain d'avance qu'elles devaient exister.
C'est afin d'énoncer brièvement cette assimilation fondamentale entre la pesanteur et la force accélératrice des astres qu'on a créé le mot heureux de gravitation, envisagé comme exactement synonyme de pesanteur universelle, pour désigner l'action du soleil sur les planètes, et de celles-ci sur leurs satellites. L'emploi de ce terme a le précieux avantage philosophique d'indiquer strictement un simple fait général, mathématiquement constaté, sans aucune vaine recherche de la nature intime et de la cause première de cette action céleste ni de cette pesanteur terrestre. Il tend à faire éminemment ressortir le vrai caractère essentiel de toutes nos explications positives, qui consistent, en effet, à lier et à assimiler le plus complètement possible. Nous ne pouvons évidemment savoir ce que sont au fond cette action mutuelle des astres, et cette pesanteur des corps terrestres: une tentative quelconque à cet égard serait, de toute nécessité, profondément illusoire aussi bien que parfaitement oiseuse; les esprits entièrement étrangers aux études scientifiques peuvent seuls s'en occuper aujourd'hui. Mais nous connaissons, avec une pleine certitude, l'existence et la loi de ces deux ordres de phénomènes; et nous savons, en outre, qu'ils sont identiques. C'est ce qui constitue leur véritable explication mutuelle, par une exacte comparaison des moins connus aux plus connus. Pour le géomètre, qu'une longue et habituelle méditation a profondément familiarisé avec le vrai mécanisme des mouvemens célestes, la pesanteur terrestre est expliquée, quand il la conçoit comme un cas particulier de la gravitation générale. Au contraire, c'est la pesanteur qui fait comprendre la gravitation céleste au physicien proprement dit, ainsi qu'au vulgaire, la notion lui en étant seule suffisamment familière. Nous ne pouvons jamais aller réellement au-delà de semblables rapprochemens.
D'après ces principes élémentaires de la philosophie positive, je ne saurais ici trop fortement blâmer l'usage irrationnel que l'on fait encore si fréquemment du mot attraction, dans l'étude de la mécanique céleste. Son emploi, qu'un simple artifice de langage eût toujours permis d'éviter, est surtout devenu sans excuse depuis la formation du mot gravitation. Quoique cette réserve du style ne doive sans doute dégénérer jamais en une affectation puérile et pédantesque, il importe infiniment que le discours maintienne inaltérable le vrai caractère d'une conception positive aussi fondamentale. Or, le mot attraction tend, par lui-même, à jeter aussitôt l'esprit dans une direction vague et anti-scientifique, par la prétention qu'il annonce inévitablement, malgré tous les commentaires préalables, à caractériser le mode d'action du soleil sur les planètes, et de la terre sur les poids, en le comparant à l'effort par lequel nous tirons à nous, à l'aide d'un lien quelconque, un objet éloigné: car tel est le sens de ce terme, ou il n'en a aucun. Depuis un siècle que cette expression est usitée scientifiquement, il me semble étrange qu'on n'ait pas encore nettement senti qu'une telle comparaison n'est nullement propre, en n'y voyant même qu'une image grossière, à donner aucune idée de l'action solaire ou terrestre, dont elle tend, au contraire, à obscurcir la notion. Car, une semblable métaphore ne pourrait avoir quelque utilité dans le discours que si l'action effective de tirer était réellement influencée par la distance, ce qui est évidemment absurde: qu'un objet soit à dix mètres ou à cent, le même effort l'attirera vers nous exactement de la même quantité, en négligeant du moins la masse et la raideur du lien. Comment un tel mot serait-il donc propre à qualifier un phénomène qui, à une distance décuple, est nécessairement cent fois moindre, sans qu'aucune autre circonstance ait changé? Je ne vois, dans son emploi, qu'un grand nombre d'inconvéniens majeurs, sans le moindre avantage réel.
Il y a tout lieu de penser que cette idée inintelligible d'attraction fut pour beaucoup dans l'opposition que rencontra si long-temps, surtout en France, la conception newtonienne, dont l'étude approfondie n'avait point encore démontré combien elle est au fond nécessairement indépendante d'une telle notion. Elle devait, en effet, sous une semblable forme, se présenter naturellement à nos penseurs comme susceptible de faire rétrograder la philosophie, et de la ramener à l'état métaphysique, en rétablissant ces qualités occultes que notre grand Descartes avait, après tant d'efforts, si justement bannies. Telle est aussi la principale objection que les cartésiens, parmi lesquels on distingue l'illustre Jean Bernouilli et le sage Fontenelle, reproduisent continuellement dans tous leurs écrits. Il n'est pas douteux, ce me semble, que l'esprit français, éminemment clair et positif, n'ait ainsi puissamment contribué, en résultat général de cette utile discussion, à épurer le caractère primitif de la pensée fondamentale de Newton, en détruisant l'apparence métaphysique qui altérait la réalité admirable de cette sublime découverte.
Pour compléter l'examen général de la loi de la gravitation, il faut encore l'envisager sous un dernier aspect élémentaire, indispensable à son entière explication mathématique.
Nous avons jusqu'ici considéré l'action du soleil sur les planètes et de celles-ci sur leurs satellites, sans avoir aucun égard aux dimensions et aux formes de ces grands corps, et comme si tous étaient autant de points. Mais, la proportionnalité bien constatée entre l'intensité de cette action et la masse du corps qui l'éprouve, montre clairement qu'elle ne s'exerce directement que sur les molécules, qui toutes y participent indépendamment les unes des autres, et avec une égale énergie, sauf la diversité des distances. La gravitation moléculaire est donc seule réelle, et celle des masses n'en peut être que le résultat mathématique. Celle-ci néanmoins peut seule être immédiatement considérée, soit dans l'observation des phénomènes, soit dans l'étude mathématique des mouvemens, qui exige indispensablement la conception d'une force unique, au lieu de cette infinité d'actions élémentaires. De là est résulté nécessairement une partie essentielle, quoique préliminaire, de la mécanique céleste, celle qui a pour objet de composer en une seule résultante toutes les gravitations mutuelles des molécules de deux astres. Cette portion, aujourd'hui très étendue, a été, comme toutes les autres, fondée par Newton, et les deux théorèmes essentiels qu'il a primitivement établis à ce sujet, sont encore ce que cette importante théorie présente de plus usuel. Ils reposent sur la forme presque exactement sphérique de tous les astres. En supposant des sphères parfaites, et composées de couches homogènes, dont la densité varie d'ailleurs arbitrairement, Newton a découvert, par des considérations géométriques extrêmement simples: 1º. que les gravitations mutuelles de toutes les molécules d'une même couche sur un point intérieur quelconque se détruisent nécessairement; 2º que la gravitation totale d'un point extérieur vers les diverses molécules de la sphère, est exactement la même que si la masse entière de cette sphère était condensée à son centre; et qu'il en est par conséquent ainsi de la gravitation mutuelle de deux sphères. Il en résulte immédiatement la précieuse faculté de pouvoir traiter les corps célestes comme des points, dans l'étude de leurs mouvemens de translation. Mais, l'irrégularité effective de la figure des astres, quelque petite qu'elle soit, a besoin d'être prise en considération dans la théorie de leurs rotations, où ces théorèmes cessent d'être applicables. C'est même seulement d'après cette différence que les géomètres ont pu expliquer, à cet égard, plusieurs phénomènes importans, comme je l'indiquerai dans la vingt-sixième leçon. Pour toute autre forme que la sphère, le problème général se complique beaucoup, et les difficultés analytiques qu'il présente ne sont encore habituellement surmontables que par approximation, malgré l'importance des derniers perfectionnemens introduits dans cette théorie, surtout par les travaux tout récens de M. Jacobi. Enfin la solution parfaitement exacte exigerait évidemment la connaissance de la vraie loi de la densité dans l'intérieur des astres, qu'on ne peut guère envisager comme susceptible d'être jamais réellement obtenue.
La loi générale de l'égalité constante et nécessaire entre la réaction et l'action, qui est une des trois bases physiques essentielles de la mécanique rationnelle, comme je l'ai établi dans la philosophie mathématique, montre évidemment, sans aucune explication spéciale, que la gravitation est essentiellement mutuelle, en sorte que le soleil pèse vers chaque planète, et les planètes vers leurs satellites. Quoique l'extrême inégalité des masses doive rendre naturellement les effets de cette pesanteur inverse fort difficiles à constater, à cause de leur excessive petitesse par rapport aux mouvemens principaux, j'indiquerai néanmoins, dans les deux leçons suivantes, comment la mécanique céleste les a mis en évidence à l'égard de divers phénomènes secondaires.
Quant à la gravitation des planètes les unes vers les autres, elle était sans doute naturellement indiquée par la seule exposition de la conception fondamentale. Mais il faut reconnaître, ce me semble, qu'elle n'a été mathématiquement démontrée que lorsque les successeurs de Newton en ont déduit l'explication exacte des perturbations effectives qu'éprouve le mouvement principal des planètes, comme l'indiquera la vingt-sixième leçon. Dès que ce résultat capital a été obtenu, cette gravitation secondaire s'est trouvée établie d'une manière aussi positive que la gravitation principale.
C'est ainsi que l'analyse approfondie des phénomènes célestes a irrévocablement prouvé, dans toutes ses diverses parties, cette grande loi fondamentale, résultat le plus sublime de l'ensemble de nos études sur la nature: Toutes les molécules de notre monde gravitent les unes vers les autres, proportionnellement à leurs masses, et inversement aux quarrés de leurs distances.
Je croirais méconnaître profondément le vrai caractère de cette admirable conception, qui n'est que l'exacte représentation d'un fait général, si je l'étendais aussitôt, comme on ne craint pas habituellement de le faire, aux phénomènes les plus généraux de l'univers, relatifs à l'action mutuelle des divers systèmes solaires. Qu'on le suppose par simple analogie, et en attendant des renseignemens directs, qui, si jamais ils arrivent, prouveraient peut-être le contraire, je n'y vois sans doute aucun inconvénient. Ce procédé me paraît même très philosophique, comme devant nécessairement hâter à cet égard les découvertes réelles, si elles sont effectivement possibles. Mais, regarder témérairement une telle extension comme aussi certaine que la gravitation intérieure de notre monde, c'est, à mon avis, altérer autant que possible la nature de nos vraies connaissances, en confondant ce qu'il y a de véritablement positif avec ce qui sera peut-être toujours essentiellement conjectural. En procédant ainsi, on obéit encore, à son insu, à cette tendance métaphysique vers les connaissances absolues, dont l'esprit humain a eu tant de peine à s'affranchir. Sur quoi est fondée la réalité de la gravitation newtonienne? Uniquement sans doute sur sa relation avec les phénomènes, à défaut de laquelle ce ne serait qu'un admirable jeu d'esprit. Or, dans la considération de l'univers, il n'y a pas encore de phénomènes exactement observés et mesurés, à plus forte raison, aucune loi géométrique comparable à celles de Képler: quelle serait donc alors la base de nos conceptions dynamiques, qui n'auraient rien à interpréter? Je n'ignore pas que, dans les mouvemens relatifs de quelques étoiles doubles, on a cru reconnaître depuis peu les ellipses de Képler: je le désire vivement, mais sans en être jusqu'ici bien convaincu. Les mesures sont encore tellement délicates dans ce genre d'observations, que leur précision ne saurait être garantie, à l'abri de toute prévention, au degré où l'exigerait une semblable conclusion. Si quelque astronome y avait bien cherché les orbites elliptiques où l'astre principal occupe le centre au lieu du foyer, ou le milieu entre ces deux points, etc., ne serait-il point peut-être parvenu à les y rencontrer? Et dès lors, cependant, la loi de gravitation eût été, comme on sait, absolument opposée 11. D'ailleurs, en admettant la parfaite réalité de ces résultats, qui, dans toute hypothèse, n'en sont pas moins fort précieux, ils ne constituent évidemment qu'un cas extrêmement particulier, encore impropre à motiver suffisamment une conclusion vraiment universelle. Je crois donc devoir maintenir, en mécanique céleste, comme je l'ai déjà fait en géométrie céleste, la séparation tranchée que je me suis efforcé de rendre sensible, entre la notion de monde et celle d'univers, et la restriction fondamentale que j'ai tâché d'établir, pour nos études vraiment positives, à la seule considération des phénomènes intérieurs de notre système solaire. Il est d'ailleurs évident que j'indique ici une simple suspension de jugement; car, je suis loin d'avoir aucun motif direct pour que la loi de la gravitation cesse d'être vraie dans l'action mutuelle des soleils; ce qui ne saurait être, pour moi, une raison de l'y étendre positivement, si ce n'est comme moyen artificiel d'investigation. Malgré le fameux principe de la raison suffisante, l'absence de motifs de nier ne constitue certainement point le droit d'affirmer, sans aucune preuve directe. Les notions absolues me semblent tellement impossibles, que je n'oserais même nullement garantir, quelque vraisemblance que j'y voie, la perpétuité nécessaire et inaltérable de la théorie de la gravitation, restreinte à l'intérieur de notre monde, si l'on venait un jour, ce qu'il est au reste bien difficile d'admettre, à perfectionner la précision de nos observations actuelles autant que nous l'avons fait comparativement à celles d'Hipparque. Mais, quand même cela pourrait jamais arriver, et qu'il fallût alors construire une autre loi de gravitation, il resterait éternellement vrai, de toute nécessité, que la loi actuelle satisfait aux observations en se contentant de la précision des secondes, angulaires ou horaires, propriété qui suffit pleinement sans doute à nos besoins réels. C'est ainsi que, malgré la nature nécessairement relative de nos connaissances positives, nos théories présentent, au milieu de leurs variations inévitables, et par leur subordination même aux faits observés, un caractère fondamental de stabilité réelle, propre à prévenir la vacillation de nos intelligences: comme je l'ai déjà indiqué ailleurs, au sujet de la figure de la terre.
Note 11: (retour) Je regretterais profondément d'exciter ainsi le moindre doute sur l'exactitude et la sagacité des astronomes dont la constance à poursuivre des observations aussi délicates et aussi pénibles mérite assurément tous nos respects. Mais peut-être n'ont-ils pas, avant tout, assez réfléchi au degré de précision tout particulier qu'exigeraient de telles déterminations pour motiver une conséquence dynamique solidement fondée. L'immense éloignement de ces orbites, dont les rayons n'ont jamais qu'une étendue angulaire de quelques secondes, ne nous interdit-il point, de toute nécessité, d'apporter dans l'étude mathématique de leur figure les précautions indispensables qui ont été possibles à l'égard de nos orbites planétaires?
Telles sont les considérations essentielles que je devais présenter sur la loi fondamentale de la gravitation, avant de passer à l'examen philosophique de l'immense perfectionnement qu'elle a introduit dans la connaissance effective des phénomènes intérieurs de notre monde, surtout en dévoilant la véritable règle de leurs anomalies apparentes. On a dû remarquer, dans cette exposition, combien la conception newtonienne, abstraction faite des notions infiniment précieuses qu'elle nous a directement procurées, a perfectionné notre marche philosophique, combien elle a avancé l'éducation générale de la raison humaine.
Jusque alors l'esprit humain n'avait pu s'élever, dans la personne de notre grand Descartes, à une conception mécanique des phénomènes généraux, qu'en créant, sans aucune base positive, une vaste hypothèse sur leur mode de production. Cet ébranlement énergique était, sans doute, indispensable, comme je l'établirai spécialement dans la dernière partie de cet ouvrage, pour dégager définitivement notre intelligence des voies métaphysiques, qui l'avaient si long-temps poussée à la vaine recherche des notions absolues. Mais l'empire trop prolongé d'une telle conception eût entravé profondément le développement de l'esprit humain, en lui faisant user ses forces à la poursuite de théories essentiellement arbitraires. L'action philosophique de la découverte newtonienne est venue le lancer dans la véritable direction positive, susceptible d'un progrès réel et indéfini. Elle a soigneusement conservé de Descartes l'idée fondamentale d'un mécanisme; mais en écartant définitivement, comme radicalement inaccessible à nos moyens, toute enquête de l'origine et du mode de production. Elle a montré, par un exemple admirable, comment, sans pénétrer dans l'essence des phénomènes, nous pouvions parvenir exactement à les lier et à les assimiler, de manière à atteindre, avec autant de précision que de certitude, le véritable but définitif de nos études réelles, une juste prévision des événemens, que des conceptions à priori sont nécessairement incapables de procurer.