L'Académie des sciences et les académiciens de 1666 à 1793
LES GÉOMÈTRES.
Christian Huyghens, esprit rare et excellent à plus d’un titre, a égalé les savants et les inventeurs les plus illustres. Jamais enfant plus heureusement né ne rencontra dès son premier jour, avec des soins plus assidus, un milieu plus vivifiant et plus favorable. Son père, Constantin Huyghens, homme de grand jugement, habile dans les arts, versé dans les lettres et dans les sciences, avait su mériter par lui-même la haute position et la confiance publique dont sa famille était depuis longtemps investie. Plusieurs missions diplomatiques habilement accomplies pour les États de Hollande lui avaient fait en France, en Angleterre et en Italie de nombreux amis, empressés plus tard à servir son fils et heureux d’applaudir à ses succès. Le roi Louis XIII lui-même, pour lui prouver son estime et récompenser son mérite, avait ajouté aux armoiries de Constantin une fleur de lis d’or que ses descendants étaient autorisés à y placer comme lui. Père de cinq enfants tous remarquables par l’intelligence, Constantin appela à orner et à éclairer leur esprit les maîtres les plus excellents d’un pays illustre entre tous par la culture intellectuelle. En même temps que les langues anciennes, le jeune Christian apprit les langues étrangères, et tandis que dans les sciences il dépassait rapidement ses maîtres, il réussissait dans la musique et dans le dessin assez pour pouvoir, s’il l’eût voulu, suivre la carrière d’un artiste; il trouvait enfin le temps d’étudier en droit à l’université de Leyde et d’y prendre le diplôme de docteur. Constantin, pour le diriger, n’eut d’ailleurs qu’à imiter et à recommencer ce que son père avait fait pour lui:
Et minus hic ovo non discrepat ovum,
dit-il avec orgueil, dans un poëme latin sur sa propre vie.
Aimable, spirituel, de figure agréable, adroit à tous les exercices du corps, aussi curieux de l’étude qu’ardent au plaisir et salué du nom de jeune Archimède, Huyghens vint à Paris dans tout l’éclat d’une jeunesse déjà illustre, sans autre ambition que de polir son esprit et d’étendre ses idées par la société des honnêtes gens et le commerce des plus habiles.
L’académicien Conrard, en annonçant à Constantin Huyghens l’accueil fait à son aimable fils, lui laisse deviner que le jeune Archimède ne voyageait pas seulement en philosophe.
«Je m’en rapporte, dit Conrard, parlant d’une question insignifiante et de pure politesse, je m’en rapporte à votre excellent Archimède quand il voudra parler sincèrement, comme il fera sans doute lorsque la mer nous aura séparés et qu’il sera tête à tête avec vous dans votre paradis terrestre dont il m’a fait une si belle description. Je ne crains plus tant qu’il se trouve auprès de vous que je le craignais il y a quelque temps, car il fait ici tant de bonnes et agréables connaissances, que je ne le vois guère plus que s’il était à la Haye ou à Zulichem. Au lieu donc que je vous conjurais au commencement de ne nous le redemander pas sitôt, je vous avertis aujourd’hui, mais en grand secret, que si vous n’y prenez garde, on l’arrêtera ici pour toujours et peut-être même de son consentement, car il trouve tant de gens et tant de compagnies à son gré, que s’il se pouvait partager en vingt ou trente parts tous les jours, il ne contenterait pas encore tous ceux qui le désirent. Il y a trois mois qu’il a fait espérer une visite à une dame de très-grand mérite, avec laquelle je lui ai fait faire connaissance, et il n’a pu encore trouver moyen de la lui rendre, quoiqu’il ne le désire pas moins qu’elle et qu’il ne leur faille qu’une après-dînée pour les satisfaire tous deux. Jugez d’après cela, monsieur, ce que peut attendre de lui un misérable comme moi, qui n’est bon à rien.»
Sans oublier ni négliger la science, Huyghens trouvait le temps de se lier avec la célèbre Ninon de Lenclos, et de lui adresser quelques vers, que Voltaire, à qui elle a eu la malice de les montrer, aurait mieux fait de ne pas imprimer.
On pourrait aisément pardonner à Huyghens de n’être pas poëte et de mal rimer dans une langue étrangère; il pensait cependant, comme Pascal, «qu’un honnête homme, sans se piquer de rien, doit savoir juger de tout, même de la poésie, et ne se montrer incapable d’aucun exercice de l’esprit.» Quelques vers, composés comme épitaphe de Descartes, et publiés pour la première fois par M. le comte Foucher de Careil, prouvent que la prétention n’était pas excessive:
Sous le climat gelé de ces terres chagrines
Où l’hyver est suivy de l’arrière-saison,
Te voicy sur le lieu qui couvre les ruines
D’un fameux bâtiment qu’habita la raison.
Par la rigueur du sort et de la Parque infâme
Cy-gist Descartes au regret de l’univers;
Ce qui servoit jadis d’interprète à son âme
Sert de matière aux pleurs et de pâture aux vers.
Cette âme, qui toujours en sagesse féconde
Faisoit voir aux esprits ce qui se cache aux yeux,
Après avoir produit le modelle du monde,
S’informe désormais du mystère des cieux.
Nature, prends le deuil, viens plaindre la première
Le grand Descartes et montrer ton désespoir.
Quand il perdit le jour, tu perdis la lumière;
Ce n’est qu’à ce flambeau que nous t’avons pu voir.
Huyghens, comme Conrard le faisait craindre à son père, trouva en France une seconde patrie. Inscrit le premier sur la liste des membres de l’Académie des sciences, il en fut l’ornement et la gloire jusqu’à la révocation de l’édit de Nantes. Résistant alors à toutes les instances et refusant la tolérance exceptionnelle qu’on lui eût volontiers accordée, il retourna en Hollande, où il mourut dix ans après, épuisé de forces et engourdi, à l’âge de soixante-six ans, par la vieillesse prématurée de l’esprit et du corps.
Toutes les œuvres d’Huyghens font paraître la lueur et souvent l’éclat de son génie; aucune n’est de médiocre importance. En mécanique, en géométrie, en physique, il a des égaux; il ne peut avoir de supérieurs. Deux de ses écrits surtout, le Traité sur le pendule et la Théorie de la lumière, vivront éternellement parmi les chefs-d’œuvre de l’esprit humain.
Placé par sa date entre les dialogues de Galilée sur le mouvement et le livre des principes de Newton, l’Horologium oscillatorium d’Huyghens s’appuie sur les premiers et a servi évidemment avec ses théorèmes sur la force centrifuge à la préparation du second. C’est dans ces trois chefs-d’œuvre que l’on peut trouver, sans rien chercher ailleurs, la base ferme et solide de la science du mouvement. Peu d’ouvrages d’ailleurs, indépendamment des fruits qu’il devait produire et pour n’en examiner que les détails, font paraître dans une plus grande abondance d’inventions originales une plus grande puissance géométrique. L’expérience avait appris à Galilée l’isochronisme des petites oscillations du pendule, c’est-à-dire l’égale durée des oscillations plus ou moins amples d’un pendule de longueur donnée. Mais cette égalité n’est qu’approchée, et les petites oscillations, l’expérience l’a démontré, s’accomplissent plus rapidement que les plus amples. Huyghens, préoccupé des applications à l’horlogerie, chercha d’abord à former un pendule rigoureusement isochrone. Dans la solution de ce beau problème, où les principes physiques étaient à créer aussi bien que les méthodes géométriques, Huyghens, comme en passant et en guise de lemme, révèle la théorie des développées, exemple et modèle entièrement nouveaux de l’étude générale des courbes.
La théorie imparfaite, mais déjà lumineuse et exacte du pendule composé, complète ce beau livre, dont une note finale révèle sans démonstration, dans la théorie de la force centrifuge, les principes jusque-là inaperçus, dont la loi des attractions planétaires aurait pu être le corollaire immédiat.
Si l’Horologium oscillatorium est la plus accomplie des œuvres d’Huyghens, le Traité sur la lumière montre peut-être un plus étonnant génie. La voie ouverte par Galilée devait être suivie, et si Huyghens avait été refusé à la science, les progrès de la dynamique retardés pour un temps n’auraient pas manqué, cela paraît certain, de se produire assez rapidement sous une forme équivalente. Newton et Leibnitz, Jean et Jacques Bernoulli, d’Alembert et Clairaut, auraient peut-être accru leur gloire en se partageant une portion de la sienne. Le Traité sur la lumière reste au contraire entièrement original. Pendant un siècle et demi, les principes aujourd’hui indubitables en sont rejetés comme obscurs et sans fondement. Plusieurs générations successives, en reléguant ce petit chef-d’œuvre parmi les chimères d’un grand esprit, ne lui accordent pas d’autre attention qu’aux conjectures sur la cause de la pesanteur. C’est là pourtant peut-être sa plus admirable conception. Huyghens s’y montre non-seulement le précurseur, mais le seul guide et le maître de Thomas Young, et la théorie triomphante de Fresnel devait lui emprunter, avec ses premiers principes, quelques-uns de ses plus clairs rayons.
Les découvertes d’Huyghens sur les mathématiques pures auraient suffi à la gloire d’un autre nom. La théorie des développées et celle des fractions continues sont restées classiques dans la science. Ses écrits sur la quadrature de l’hyperbole, sur les propriétés de la logarithmique et sur la chaînette, et sur d’autres questions d’importance secondaire, montrent que le talent de l’auteur bien plus que le sujet mesure l’importance d’un ouvrage, et qu’un grand génie, sur quelque terrain qu’il se place, n’y paraît jamais à l’étroit. Aussi bien que le géomètre de Syracuse, dont ses amis lui donnaient le nom, Huyghens joignait la pratique à la théorie avec une incomparable industrie; aussi adroit que patient, il construisait de ses mains les instruments les plus délicats et les plus parfaits. C’est avec une lunette fabriquée par lui-même qu’il a découvert l’anneau et l’un des satellites de Saturne. Après avoir vu à Londres une machine pneumatique, il s’empressa de la reproduire en la perfectionnant, pour en montrer le premier à l’Académie des sciences de Paris les effets singuliers et ingénieusement variés. Ses expériences enfin sur la réfraction du spath d’Islande ont révélé les lois les plus complexes et les plus exactes en même temps que puisse citer la physique.
Quoique la gloire d’Huyghens, comme l’éclat des noms de Fermat, de Pascal et de Descartes, obscurcisse et semble effacer tout ce qui les entoure, Roberval plus d’une fois cité dans l’histoire de ces grands hommes est resté justement célèbre.
Ingénieux à proposer de beaux problèmes et habile à les résoudre, il a mérité l’estime de Pascal et celle de Fermat. Mersenne et Carcavy, mêlés tous deux à toutes les discussions sur la science, ont parlé de lui avec autant d’égard que d’affection, et le savant évêque d’Avranches, Huet, le nomme dans ses Mémoires parmi ses amis les plus chers. N’en est-ce pas assez pour balancer les jugements plus que sévères prononcés sans hésitation par les Cartésiens contre le contradicteur importun et passionné de leur maître? De nos jours encore, plus d’un philosophe épousant la querelle de Descartes, garde pour Roberval un injuste dédain. Un jour, dans une bibliothèque publique, M. Cousin, traversant la salle, voit les œuvres de Roberval entre les mains d’un lecteur; il s’arrête un instant, regarde la date de l’édition et s’éloigne en disant: «Roberval! ce n’était pas un bon homme, j’en sais long sur son compte!» J’ai cherché depuis et n’ai rien appris, sinon qu’à la campagne, chez ses parents pauvres cultivateurs, il n’avait pu dans son enfance acquérir beaucoup d’urbanité. Professeur au collége de maître Gervais et chargé en même temps de deux chaires au Collége Royal, il était plus accoutumé au commerce des livres et à la société des écoliers, qu’à la conversation des gens du monde. Appliqué aux mêmes problèmes mathématiques que Fermat, Descartes et Pascal, s’il les égalait presque par son savoir en géométrie, son esprit trop roide et trop contentieux avait moins d’étendue et de verve, et il n’était pas comme eux au-dessus de ces matières. Roberval était en outre fort inférieur par l’éducation à ses trois émules. Descartes parut seul le remarquer, et l’on vit son orgueil s’élever plus d’une fois contre un homme de si petite condition qui osait le contredire avec tant d’âpreté, méconnaître sa méthode et lui refuser tout applaudissement.
Roberval a composé plusieurs écrits réellement distingués. La Cycloïde a été pendant plusieurs années le sujet de ses études et l’occasion de ses succès. Sa méthode pour en trouver l’aire est originale et de première main. Mersenne avait inutilement demandé le résultat à Galilée, qui y avait échoué. Fermat et Descartes, sur l’énoncé connu, en trouvèrent la démonstration, mais leurs méthodes sont différentes l’une de l’autre et encore de celle de Roberval, de telle sorte qu’en les voyant toutes il n’est pas difficile, c’est le sentiment de Pascal, de reconnaître quelle est celle de l’auteur; «car il est vrai, dit-il, qu’elle a un caractère particulier et qu’elle est prise par une voie si belle et si simple, qu’on connaît bien que c’est la naturelle.» Roberval a trouvé aussi, le premier, le volume engendré par la Cycloïde tournant autour de son axe, ce qui était alors, au jugement de Pascal, un problème de haute, longue et pénible recherche.
Roberval, lors de la fondation de l’Académie, était âgé de soixante-quatre ans; il en fut un membre assidu et actif. Adversaire déclaré des hypothèses et des systèmes en physique, il a contribué à maintenir la compagnie dans la voie excellente de l’observation et de l’expérience; et s’il eut avec Huyghens et avec Mariotte des discussions quelquefois très-vives, ils souriaient de ses emportements sans en garder rancune.
Le marquis de L’Hôpital, lors de la réorganisation de l’Académie en 1699, eût été digne de tenir le premier rang dans la section de géométrie. Mais ses titres de marquis de Sainte-Mesme, comte d’Entremont, seigneur d’Ouques, la Chaise, le Bréau et autres lieux, lui assuraient une primauté d’autre sorte; on le nomma honoraire. Initié le premier peut-être parmi les savants français à la géométrie nouvelle de Leibnitz et de Newton, nul ne travailla plus que lui à la répandre ni avec plus de fruit: correspondant assidu d’Huyghens et de Leibnitz, il échangeait avec ces deux grands hommes d’ingénieux et difficiles problèmes dans lesquels, avec un moindre génie d’invention, il montre dans les détails une perspicacité souvent égale à la leur. C’est L’Hôpital surtout qui, par ses communications, a fait comprendre à Huyghens vieillissant l’importance du calcul différentiel. Disciple de Jean Bernoulli et toujours respectueux pour Leibnitz dont il propageait les idées et les principes, il arrêta au calcul différentiel son excellent ouvrage sur l’Analyse des infiniment petits, sans vouloir devancer, en abordant le calcul intégral, le livre sur l’Infini que l’illustre inventeur avait promis et ne donna jamais. Newton, avec lequel L’Hôpital n’eut pas de relations directes, était l’objet de toute son admiration. Aimant à questionner ceux qui avaient eu l’honneur de voir un si grand homme, il s’étonnait, dit-on, dans son naïf enthousiasme, que, soumis aux lois de l’humanité, l’auteur du livre des Principes pût manger, boire et dormir comme les autres hommes.
L’Hôpital mourut jeune encore, âgé de quarante ans à peine, sans avoir entièrement réalisé la prédiction de Leibnitz, qui attendait de lui de grandes lumières. «Il avait servi, dit Fontenelle, il était d’une naissance qui l’engageait à un grand nombre de devoirs. Il avait une famille, des soins domestiques, un bien très-considérable à conduire et par conséquent beaucoup d’affaires. Il était dans le commerce du monde et il y vivait à peu près comme ceux dont cette occupation oisive est la seule occupation; il n’était pas même ennemi des plaisirs.» N’en est-ce pas assez pour qu’on doive admirer la profondeur de ses travaux sans s’étonner de leur petit nombre?
Très-inférieur au marquis de L’Hôpital, Varignon devint cependant, par sa mort, le plus célèbre et aussi le plus habile des géomètres français; acceptant comme lui les théories infinitésimales, il contribua à les répandre, sinon à les accroître et à les affermir. Lorsque, dans le sein de l’Académie, l’ancienne géométrie, représentée par Rolle et Galois, voulut tenter un dernier effort contre les nouvelles méthodes, il les défendit aussitôt, mais avec plus de conviction et de force que de véritable talent, et la discussion fut plus longue qu’il ne convient. La géométrie en effet, dans les questions les plus subtiles, devrait retenir la précision qui fait son caractère propre, et ne souffrant pas l’équivoque, elle ne doit laisser aucun refuge à l’erreur.
Quoiqu’en attachant son nom à un théorème devenu classique, Rolle ait acquis parmi les écoliers une sorte de notoriété de hasard, sa passion pour la science, qui fut constante et sincère, était satisfaite à bien peu de frais. Ancien maître d’écriture et de calcul, il s’était instruit seul. En pénétrant avec ardeur dans la science des nombres, il rencontra l’algèbre et s’imagina avoir fait de merveilleux progrès.
Mais les théories plus élevées lui restèrent inaccessibles. Il les crut inexactes et traita de sophismes les méthodes qu’il ne comprenait pas. Infatigable à discuter et à écrire, c’est aux découvertes de Leibnitz et de Newton qu’il s’attaquait surtout avec une sorte de colère. Affectant de confondre ce que les inventeurs avaient soigneusement distingué, il prétendait par quelques exemples mal compris renverser l’analyse nouvelle. Sans entrer dans le détail et sans rien opposer à la vérité des démonstrations, il reprochait vaguement et mal à propos aux nouveaux calculs de supposer l’infini en le comprenant dans les résultats aussi fréquemment et aussi hardiment que le fini, et d’admettre des grandeurs infiniment petites qui cependant peuvent se résoudre en d’autres grandeurs infiniment plus petites, et ainsi de suite à l’infini. L’Hôpital jugea inutile de répondre, et laissa à Varignon tout le poids de la discussion qui franchit bientôt les bornes de l’Académie. Parmi les géomètres étrangers à la compagnie, Rolle trouva des adversaires aussi convaincus et moins patients, et Saurin, qui peu de temps après devait recevoir le titre d’associé, le combattit de toutes ses forces.
Joseph Saurin, moins célèbre par ses travaux scientifiques que par les vicissitudes de son existence, était fils d’un ministre protestant de Grenoble, dont il avait, fort jeune encore, voulu suivre la carrière. Orateur véhément et fort applaudi dans son parti, Saurin s’était compromis par trop de hardiesse, et plusieurs années avant la révocation de l’édit de Nantes, il avait dû se réfugier en Suisse. Il y fut reçu avec grande distinction et obtint une cure considérable dans le bailliage d’Yverdun; mais Saurin n’était pas calviniste, sa doctrine sur la grâce était celle de Luther. On était justifié, suivant lui, dès qu’on croyait l’être avec certitude, et sans cette certitude il n’y avait pas de salut. Les théologiens calvinistes obtinrent, sur cette question et sur quelques autres, un formulaire que les ministres furent obligés de signer sous peine d’être exclus de toute fonction lucrative. Les Français réfugiés s’y refusèrent d’abord; mais le premier emportement se calma peu à peu, et tous les jours il s’en détachait quelqu’un qui, cédant à la nécessité, se résignait à signer; Saurin ne fut pas de ce nombre, et sans refuser avec éclat, il éluda la signature, dit Fontenelle, par toutes les chicanes à peu près raisonnables qu’il put imaginer pour gagner du temps. Un ami cependant arrangea tout par une signature qu’il avait le droit de donner et dont on se contenta. Saurin, rassuré sur sa position, s’allia peu de temps après en épousant Mlle de Crouzas, à une des premières familles du pays. Toujours imprudent, il se compromit de nouveau par ses sermons, et les persécutions le menacèrent une troisième fois. Ses dissentiments avec ses confrères firent naître des doutes dans son esprit; il demanda pour les éclaircir un entretien à Bossuet, qu’il ne connaissait pas. Les sauf-conduits nécessaires lui furent expédiés. Après de longues discussions, il se déclara satisfait sur tous les points, et abjura sans contrainte, mais non sans espérance, se faisant pour toujours de Bossuet un puissant et zélé protecteur. Mme Saurin, retirée alors dans sa famille, avait tout ignoré jusque-là; les inspirations qu’elle reçut d’abord étaient loin d’être favorables à son mari. La tendresse cependant finit par l’emporter, et après bien des luttes et des difficultés, qui amenèrent même des dangers sérieux et une détention dont on ne pouvait prévoir l’issue, Saurin, fort décrié en Suisse pour son apostasie, toujours protégé par Bossuet, put enfin s’établir à Paris en terminant par là cette période agitée de son existence, qu’il appelait plus tard le roman de sa vie.
Forcé de choisir une occupation, il se décida pour les mathématiques qui depuis longtemps l’attiraient; avant même d’y être de première force, il commença à les enseigner. C’est au milieu de ses études et dans l’ardeur d’une initiation toute récente qu’il rencontra les objections de Rolle et tint à honneur d’y répondre; la lutte entre eux ne fut pas courtoise, et si l’avantage reste à Saurin qui défendait la bonne cause, la vivacité de ses attaques put servir d’excuse à l’aigreur de son adversaire. Las enfin de lutter contre des objections sans cesse renaissantes, il s’adressa à l’Académie pour lui demander une décision, déclarant que, si elle ne jugeait pas dans un certain temps, il tiendrait M. Rolle pour condamné, puisque toute la faveur de la compagnie devait être pour lui. Mais l’Académie, plus préoccupée de la forme que du fond, blâma également les deux adversaires, en rappelant M. Rolle aux statuts de l’Académie dont il avait l’honneur d’être membre, et M. Saurin à son propre cœur. Peu de temps après cependant, Saurin était nommé membre associé de l’Académie. Ses nombreux mémoires, insérés de 1707 à 1731, montrent, avec la connaissance des mathématiques pures, la préoccupation constante de faire triompher les théories physiques de Descartes. Les tourbillons étaient pour lui une réalité et l’attraction newtonienne une chimère. En abandonnant les traces du maître, c’est Descartes qu’il voulait dire, on se trouvait, suivant lui, replongé dans les anciennes ténèbres du péripatétisme, dont il conjurait le ciel de nous préserver. «On entend assez, dit Fontenelle, qui rapporte cette phrase, qu’il parle des attractions newtoniennes; eût-on cru, ajoute-t-il, qu’il fallût jamais prier le ciel de préserver des Français d’une prévention trop favorable pour un système incompréhensible, eux qui aiment tant la clarté, et pour un système né en pays étranger, eux qu’on accuse tant de ne goûter que ce qui leur appartient.»
Loin des agitations qui avaient troublé sa jeunesse, Saurin pouvait se croire assuré d’une paisible et douce existence; un coup étrange et imprévu devait cependant le frapper encore. Il fréquentait un café, celui de la Laurent, dont les habitués, presque tous érudits ou gens de lettres, étaient divisés par des rivalités et des haines violentes. Quelques couplets satiriques et injurieux coururent dans le café. J.-B. Rousseau s’en avoua l’auteur, et ils lui attirèrent de telles menaces, qu’il s’abstint de revenir. Plusieurs années après, d’autres couplets sans style et sans esprit, et qui semblent, à la grossièreté près, l’œuvre d’un enfant qui s’exerce à coudre des rimes, furent remis mystérieusement à l’un des habitués du café: on soupçonna Rousseau. Sans plus ample preuve, l’un des personnages insultés lui administra des coups de bâton en pleine rue. Ne pouvant obtenir ni justice ni réparation, Rousseau chercha l’auteur des couplets, et sur des indices vraisemblables, crut le trouver dans Saurin qui fut emprisonné. On produisit un exemplaire des couplets écrit de sa main; l’accusation y vit un brouillon; suivant Saurin c’était une copie. Il composa pour sa défense un mémoire considéré par Voltaire, malheureusement fort partial, comme un des ouvrages de cette nature les plus adroits et les plus véritablement éloquents. Après une détention préventive de plus d’une année, Saurin fut acquitté faute de preuves, et il serait bien plus difficile encore d’en trouver aujourd’hui dans un sens ou dans l’autre. Quant à J.-B. Rousseau, il aurait pu se borner, comme Clément Marot, dans une circonstance semblable, à répondre à ses accusateurs:
Si mentez vous bien par la gorge.
| • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • |
Il ne sortit oncq de ma forge
Un ouvraige si mal limé.
Les dernières années de Saurin furent consacrées à la science et au développement des idées de Descartes sur la physique; mais quoique destinées à disparaître bientôt sans retour, personne ne les attaquait dans le sein de l’Académie, où elles n’avaient pas besoin de défenseur.
Il mourut en 1737, à l’âge de soixante et dix-huit ans, après avoir obtenu depuis six ans le titre de vétéran, qui le dispensait des travaux réguliers imposés aux pensionnaires.
Les travaux nombreux et variés de de Lahire, auraient pu faire la célébrité d’un nom que son père, peintre habile, avait déjà porté avec honneur.
De Lahire était un savant universel, géomètre, astronome, physicien, mécanicien, ingénieur, anatomiste et naturaliste parfois, en même temps que très-habile artiste; capable des spéculations les plus hautes comme de la pratique la plus délicate, et curieux de toutes les sciences, il a fait preuve dans toutes d’un esprit distingué, mais n’a excellé dans aucune. Pendant cinquante ans il s’associa avec une inconcevable activité à tous les travaux de l’Académie. Orphelin à l’âge de dix-sept ans, il se rendit en Italie pour y compléter ses études d’artiste; quatre ans après il revint géomètre. L’étude de la perspective, en l’initiant aux mathématiques, lui avait montré sa véritable voie: il ne cessa plus de la suivre.
Quelques écrits rédigés à la manière des anciens sur les sections coniques et la cycloïde, et qui, sans apporter un grand progrès à la science, révélèrent son secret au public, lui ouvrirent les portes de l’Académie. Attaché bientôt avec Picard aux travaux de la carte de France, il dirigea vers les applications ses connaissances théoriques déjà très-profondes, et vit avec une sorte d’indifférence la face des mathématiques se rajeunir et se renouveler par les découvertes de Leibnitz et de Newton, qu’il n’entendit jamais bien parfaitement; toujours passionné pour la géométrie des anciens, il en resta un des représentants les plus habiles.
Son Traité sur les épicycloïdes, publié en 1692 dans les Mémoires de l’Académie, lui assure un rang estimable parmi les géomètres, et l’application ingénieuse qu’il en fit à la construction des roues d’engrenage est aujourd’hui devenue classique.
L’uniformité de mouvement, nécessaire dans un grand nombre de machines, est précieuse dans toutes, parce qu’elle diminue la fatigue des organes. Les variations de vitesse exigent des efforts proportionnés à leur rapidité et à la grandeur des masses en mouvement; il convient donc d’ajuster un engrenage de telle sorte que le mouvement uniforme de l’une des roues assure à l’autre une vitesse différente mais toujours constante, malgré le changement continuel des points de contact par lesquels les dents se poussent. Tel est le problème dont de Lahire, en le rattachant, il est vrai, à des principes moins simples et moins clairs, a donné plusieurs solutions élégantes, que les constructeurs soigneux adoptent encore aujourd’hui.
De Lahire fut, à l’Observatoire, le fondateur des observations météorologiques; de 1689 jusqu’à sa mort en 1718, les Mémoires de l’Académie contiennent, chaque année, le résumé de ses observations sur la température et sur la quantité de pluie tombée mensuellement à Paris. Son seul but est d’ailleurs de satisfaire ceux qui, comme lui, ont de la curiosité «pour connaître les variétés qui se rencontrent dans les saisons.» Ce travail fort pénible, qu’il ne discontinua jamais, l’obligeait à s’occuper de physique; mais quoiqu’il y ait appliqué, à plusieurs reprises, l’activité incessante de son esprit, ses idées sur plusieurs points ne peuvent être citées que comme une preuve frappante de l’incertitude des esprits les plus distingués de l’époque. De Lahire regarda toujours comme impossible la construction de deux thermomètres comparables en des lieux différents. Les points fixes qu’il adoptait étaient en effet les températures extrêmes des saisons exceptionnelles et celles des caves de l’Observatoire, et il ne fallait pas songer à les retrouver dans d’autres climats.
Amontons ayant reconnu, après Hooke et Newton, que la température de l’eau bouillante ne s’élève jamais au-dessus d’une certaine limite, de Lahire, en voyant plusieurs années de suite la température maxima de l’été correspondre au même degré de son thermomètre, se demanda si l’air n’a pas comme l’eau une température maxima, qui serait précisément celle à laquelle il s’arrête pendant les étés les plus chauds?
On est surpris également de voir de Lahire contredire, dans les Mémoires de l’Académie, une opinion émise par Mariotte, dont la vérité semble aujourd’hui trop évidente pour que l’on ose en faire honneur à aucun savant en particulier. D’où provient l’eau qui coule dans les rivières? Exclusivement de la pluie et de la fonte des neiges. Telle était la réponse de Mariotte, dont de Lahire conteste l’exactitude pour supposer de grands réservoirs intérieurs dont la chaleur terrestre élève les vapeurs, qui se condensent près de sa surface et coulent sur le premier lit de tuf ou de glaise qu’elles trouvent jusqu’à ce qu’une ouverture les jette hors du sein de la terre.
En signalant les lacunes des connaissances de de Lahire sur la physique, qui presque toutes sont, il ne faut pas l’oublier, celles de son époque, il n’est pas hors de propos de mentionner un curieux travail sur la réfraction, dans lequel il croit démontrer que les rayons lumineux décrivent dans l’atmosphère des arcs de cycloïde. Admettant pour la compression de l’air une loi très-différente de celle de Mariotte et déduite de raisonnements fort vagues, fondés sur l’analogie avec les ressorts d’acier, il croit la densité de l’air proportionnelle à la racine carrée de la distance à la limite supérieure de l’atmosphère. Cette loi de décroissement imposerait en effet aux molécules lumineuses une trajectoire cycloïdale; mais de Lahire le démontre par des considérations infinitésimales dont la forme étrange, incompréhensible pour le lecteur le plus familier avec les méthodes de Leibnitz et de Newton, peut servir d’excuse, sinon de justification, à ceux qui, comme Rolle et Galois, s’obstinaient à en nier la rigueur.
Citons enfin, pour donner une faible idée de la variété des travaux de de Lahire, un mémoire sur la cause pour laquelle les tiges des plantes s’élèvent verticalement, lors même que les graines sont tournées à contre-sens, et pourquoi les racines se retournent d’elles-mêmes pour s’enfoncer dans la terre. Il conçoit que, dans les plantes, la racine tire un suc plus grossier et plus pesant, et la tige au contraire un suc plus fin et plus volatil. En effet, dit-il, la racine passe, chez tous les physiciens, pour l’estomac de la plante où les sucs terrestres se digèrent et se subtilisent au point de pouvoir ensuite s’élever jusqu’aux extrémités des branches; et il admet ainsi que, dès les premiers jours de la vie de la plante, celle-ci se retourne et se maintient verticale, comme le fait, dans certains jouets d’enfant, un morceau de liége lesté de plomb à sa partie inférieure. Tel est en abrégé le système, dont suivant Fontenelle, la simplicité seule est une preuve. La physiologie végétale était peu avancée, on le voit, au commencement du XVIIIe siècle.
Sauveur, nommé d’abord adjoint pour les mathématiques, entra à l’Académie avec des titres scientifiques fort modestes. Absolument muet jusqu’à l’âge de sept ans, il conserva toute sa vie une grande difficulté d’élocution. Ses études chez les Jésuites de la Flèche ne furent nullement brillantes, et Fontenelle, toujours bienveillant, sans oser blâmer les professeurs qui désespéraient de lui, loue beaucoup la perspicacité de celui qui sut prévoir ce qu’il vaudrait un jour. Sauveur, que les écrits de Cicéron et de Virgile avaient laissé fort indifférent, fut charmé par l’arithmétique de Pelletier du Mans. Tout en étudiant les mathématiques avec ardeur, il se préparait à obtenir le titre de médecin, mais on le dissuada de suivre cette carrière; ce fut Bossuet, à qui on l’avait recommandé qui, le jugeant peu propre à y réussir, n’hésita pas à le lui dire et sut le lui persuader; il jugea qu’il allait trop directement au but en supprimant trop les paroles, et que le peu qui en restait était dénué de grâce. Sauveur, faute de trouver d’autres ressources, devint professeur de mathématiques, et malgré sa difficulté d’élocution, les enseigna avec grand succès. Les géomètres, dans ce temps-là, étaient rares, et vivaient, dit Fontenelle, séquestrés du monde; Sauveur, au contraire, s’y livrait complétement; quelques dames même aidèrent à sa réputation, et il devint bientôt le géomètre à la mode et le professeur des plus grands personnages; les enfants de France furent au nombre de ses élèves. Plein de candeur et de franchise, il sut plaire à tout le monde, et on put se demander, en le voyant si bien réussir même à la cour, si Bossuet ne s’était pas trop hâté de trouver dans ses manières un obstacle insurmontable à ses succès comme médecin. Sauveur calcula pour Dangeau, l’avantage du banquier contre les pontes au jeu de la bassette, qui étant fort à la mode, contribua à l’y mettre lui-même et lui fut plus utile qu’aux joueurs les plus heureux. Malgré la haute position qu’il avait su se créer, il désira longtemps, sans oser la demander lorsqu’elle se trouva vacante, la chaire de mathématiques du Collége royal, occupée d’abord par Ramus et qui alors se donnait au concours; il fallait, suivant le règlement, commencer les épreuves par une harangue, et cette nécessité, dont il s’effrayait fort, écartait Sauveur de la lice. C’est en 1686 seulement qu’il osa se présenter, mais devenu célèbre alors il lut sa harangue et l’on s’en contenta.
Sauveur, qui malgré ses succès comme professeur, resta toujours un géomètre médiocre à tous égards, devait cependant laisser un grand nom dans la science, et ses recherches sur l’acoustique le placent sans contredit au nombre des membres illustres de l’Académie.
Tandis que les disciples immédiats de Leibnitz et de Newton, les frères Bernoulli, Moivre, Stirling, Taylor et MacLaurin suivaient les voies nouvelles en les élargissant, les excellents écrits de L’Hôpital ne portaient en France aucun fruit.
Les mathématiciens devenaient rares, même à l’Académie, et tout l’usage des nouvelles méthodes était pour les compatriotes de leurs créateurs. Sans grand succès comme sans grand talent, Camus, Nicole et Lagny apportaient de temps à autre à l’Académie quelques faciles problèmes de géométrie ou d’algèbre, et si les frères Bernoulli n’avaient répondu par plusieurs pièces excellentes et singulières à l’honneur d’avoir été inscrits les premiers sur la liste des membres associés étrangers, la collection des Mémoires antérieurs à l’élection de Clairaut mériterait à peine une mention dans l’histoire des mathématiques.
On voit par exemple pendant plus de vingt ans, les géomètres de l’Académie, non-seulement partagés, mais suspendus dans une incertitude continuelle, affirmer et nier tour à tour des vérités démontrées depuis longtemps par Huyghens et restées obscures pour eux dans le grand jour où il les avait cependant placées. Huyghens avait trouvé très-exactement le temps d’une petite oscillation sur un cercle de rayon donné. Galilée d’autre part, en étudiant les lois de la chute, non sur le cercle mais sur une de ses cordes, avait trouvé, comme il le devait, un temps tout différent et parfaitement exact aussi. Parent, dans un journal scientifique qu’il publiait, s’avisa de signaler ces résultats comme contradictoires. Mariotte déjà, dans une lettre à Huyghens, avait fait la même confusion et commis la même erreur. Saurin, prévenu, dit-il plus tard, en faveur d’Huyghens, réfuta l’objection en maintenant l’exactitude des deux théories. Parent là-dessus avoue qu’il s’est trompé, mais réclame l’honneur de l’avoir reconnu seul avant les démonstrations de Saurin. C’est le sujet d’une discussion fort aigre pendant laquelle, changeant d’avis une seconde fois, il affirme, toutes réflexions faites, que la formule d’Huyghens est inexacte comme il l’avait pensé d’abord. Saurin se laisse convaincre, est élu membre de l’Académie, et le chevalier de Louville, s’appliquant à la même question et déconcerté par les raisons contraires, suivant lui irrésistibles, les énumère sans oser conclure. Saurin, plus hardi, démontre qu’il n’y a aucun doute et qu’Huyghens s’est trompé. Aucun académicien ne réclame, et c’est dix-huit ans après la première objection de Parent que la difficulté est enfin tranchée, mais non par la voie la plus courte, et que le chevalier de Louville, accordant enfin Huyghens avec Galilée, les déclare tous deux irréprochables. Mais par compensation, Louville à la même époque, réfutait une erreur prétendue de Leibnitz. La raison qui le détermine mérite qu’on la rapporte:
«Tant que cette erreur, dit-il, n’a été que celle de M. Leibnitz, je n’ai pas jugé à propos d’y répondre; mais le livre de mathématiques de Wolfius m’étant tombé entre les mains où j’y ai trouvé le même principe, j’ai cru qu’il était à propos de combattre ce faux préjugé.»
Est-il besoin d’ajouter que Leibnitz n’avait commis aucune erreur, et que le faux préjugé est tout entier chez Louville qui suit en mécanique les principes de Descartes?
Dans ces discussions, qui font si peu honneur à leur savoir, Saurin, Louville et Parent, sans méconnaître l’évidence des principes, s’embarrassent dans la seule discussion des conséquences. L’abbé de Molières, professeur de philosophie au Collége royal et membre de la section de géométrie à l’Académie, était moins avancé encore. Son esprit court et confus refusait toute attention aux théories nouvelles, et pour expliquer la nature se contentait des tourbillons. Écouté et goûté même des écoliers, il fit plus d’une fois sourire ses confrères; l’Académie refusa d’insérer dans ses Mémoires une expérience pleine d’illusion qui devait, suivant lui, réduire ses adversaires au silence. L’abbé réclama sans rien obtenir, et l’Académie, en maintenant sa décision, lui causa un tel accès d’impatience et de rage, que la fièvre le prit et qu’il en mourut sans avoir consenti à recevoir Maupertuis chargé par ses confrères de lui exprimer tout leur intérêt.
L’abbé de Gua, membre comme lui de la section de géométrie, lui succéda dans la chaire du Collége royal. De Gua semble à l’Académie le continuateur de Rolle. Attaché aux théories élémentaires de l’algèbre et de la géométrie analytique, il les a cultivées avec un esprit exact, mais peu inventif. Les mathématiques d’ailleurs ne l’occupaient pas tout entier; il s’était formé une théorie sur les phénomènes atmosphériques, en laquelle la témérité de ses prédictions révèle une inébranlable confiance. Il avait annoncé du tonnerre pour le 18 juillet 1756 et de l’orage pour le 22; la journée du 18 s’étant passée sans tonnerre, de Gua ne se montre nullement déconcerté. On lit au procès-verbal du 19 juillet: «M. l’abbé de Gua a dit qu’il fallait reculer de treize heures sur les événements prédits, et que comme le tonnerre prédit pour hier s’est passé en vent, le vent prédit pour mardi se passera en tonnerre.» Nous ignorons l’événement du mardi, mais l’abbé, pour s’expliquer, crut nécessaire d’écrire une nouvelle lettre.
Clairaut et d’Alembert, admis à l’Académie, l’un en 1731, l’autre en 1740, sont au nombre de ses membres véritablement illustres, et la géométrie leur doit, aussi bien que la mécanique céleste, quelques-uns de ses plus grands progrès. J’ai essayé ailleurs, en esquissant les traits principaux de leur caractère, d’indiquer le sujet et l’occasion de leurs principales découvertes. Ces études, quoique fort courtes, dépasseraient ici notre cadre, et je me bornerai à en extraire quelques pages où leur rôle est surtout celui de membres de l’Académie des sciences.
Alexis Clairaut fut un enfant merveilleusement précoce. Son père, pauvre professeur de mathématiques, chargé d’une nombreuse famille et forcé à une grande économie, instruisait lui-même ses enfants. Tout naturellement il leur enseignait de préférence ce qu’il savait le mieux, et la géométrie occupait une grande place dans leurs études. Les éléments d’Euclide servirent de premier alphabet à Clairaut; il se trouva bientôt capable de les entendre et d’en raisonner. Attiré par le charme des démonstrations abstraites qui lui semblaient claires et faciles, il avait lu et compris à l’âge de dix ans le traité des sections coniques du marquis de L’Hôpital. Vers le milieu de sa treizième année, il composa un mémoire sur les propriétés de quelques courbes nouvelles qui, présenté à l’Académie des sciences et approuvé par elle, fut imprimé à la suite d’un mémoire de son père dans le recueil intitulé: Miscellanea Berolinensia.
Le jeune frère de Clairaut ne donnait pas de moins précieuses espérances et semblait marcher sur ses traces. Il présenta comme lui à l’Académie un mémoire de mathématiques qui, de même que celui d’Alexis, semble comparable aux bons devoirs que font dans nos lycées les élèves de seize à dix-huit ans. L’instruction prématurément donnée par leur père avait donc avancé les deux enfants de quatre à cinq ans tout au plus, et si comme l’a écrit avec un peu d’exagération le géomètre Fontaine, l’esprit de Clairaut, capable de réflexion dès les premiers moments de sa vie, avait vécu, à l’âge de sept ans, sept années de plus que celui des autres hommes, il avait à cette époque perdu une partie de son avance.
Malgré la brillante carrière d’Alexis, l’exemple d’ailleurs n’est pas encourageant, et de si grands efforts d’esprit ne sont pas sans danger pour ceux qui en sont capables. Son frère n’acheva pas sa seizième année, et Alexis, atteint peu de temps après d’une fièvre cérébrale, donna lui-même de vives inquiétudes.
A l’âge de seize ans, Clairaut avait écrit un traité sur les courbes à double courbure que l’Académie accueillit avec faveur. Elle présenta peu de temps après le jeune auteur comme second candidat à la place de membre-adjoint pour la mécanique; on plaçait avant lui Saurin le fils, fort peu connu dans la science et qui depuis n’a rien fait pour elle. Bouguer, auteur d’un ouvrage excellent et original sur la lumière, ne fut présenté qu’au troisième rang. La place resta vacante pendant deux ans entiers, et lorsque Clairaut eut atteint l’âge de dix-huit ans, il fut choisi par le roi et dispensé de la règle qui fixait à vingt ans la limite d’âge des académiciens.
Pendant les années qui suivirent sa nomination, Clairaut, satisfaisant régulièrement à ses devoirs d’académicien, inséra dans les Mémoires de l’Académie plusieurs écrits, dans lesquels il se montre à la hauteur de ses confrères, sans s’élever nettement au-dessus d’eux. Son jour n’était pas encore venu.
Lorsque pour terminer par une décision certaine la question encore douteuse de l’aplatissement de la terre, l’Académie, aidée par le ministre Maurepas, envoya deux expéditions, l’une à l’équateur, l’autre au cercle polaire, Clairaut, âgé de vingt-trois ans, acceptant Maupertuis pour chef, consentit à partir pour la Laponie. Malgré la supériorité de son génie, Clairaut ne joua pas le premier rôle dans l’expédition. Maupertuis, présomptueux et vain, mais entreprenant et actif, avait été le chef et le guide de la commission; il attira à lui la gloire du succès que Clairaut ne chercha pas à lui disputer. C’est Maupertuis qui rendit compte du travail commun et qui soutint les discussions auxquelles il donna lieu; ce fut lui qui se fit peindre et graver, la tête affublée d’un bonnet d’ours, et aplatissant le globe de ses mains; c’est lui enfin à qui Voltaire, dans des vers fort ampoulés, promettait l’immortalité. Clairaut, qui ne rechercha pas les louanges de Voltaire, n’encourut jamais non plus sa redoutable inimitié. Il obtint une des pensions de l’Académie; le roi en augmenta le chiffre en sa faveur, et assuré d’une modeste aisance, il reprit tranquillement ses travaux.
Préoccupé tout naturellement de l’étude théorique de la forme de la terre, Clairaut, dans un premier écrit inséré dans les Transactions philosophiques, reprend, pour la perfectionner, sans toutefois la rendre irréprochable, la méthode un peu hasardée par laquelle Newton avait déterminé, dans le Livre des principes, la valeur numérique de l’aplatissement du globe. Le raisonnement de l’illustre géomètre, fondé seulement sur un calcul approché, supposait, sans essai de preuve, que la forme de la terre doit être celle d’un ellipsoïde de révolution. Clairaut le démontre, ou croit le démontrer, en sacrifiant lui-même, sur bien des points, la rigueur et l’exactitude géométriques. Dans ce premier essai encore, on reconnaît plus d’habileté à tourner les difficultés que de force pour les surmonter. Le beau problème de l’attraction des ellipsoïdes se présente à lui comme il s’était présenté à Newton; mais Clairaut, comme lui, profite de ce que la terre diffère peu d’une sphère, pour substituer à des calculs exacts des résultats approchés seulement, et bien plus faciles à obtenir.
L’ouvrage qu’il rédigea ensuite sur la même question est également le résultat de ses méditations sur les causes de l’aplatissement qu’il avait constaté au pôle. Rejetant cependant la gêne des chiffres, toujours inexacts et souvent contradictoires, il fait peu d’usage des mesures si péniblement obtenues et cherche la forme géométrique et pure d’une planète liquide, soustraite aux agitations accidentelles et à la variation incessante des forces perturbatrices, sous l’influence desquelles aucun ordre ne peut subsister. En Laponie, pendant les longues nuits d’hiver et les longues journées d’été, Clairaut avait pu bien souvent ébaucher ses beaux théorèmes et en méditer à loisir la démonstration; mais s’il arriva même que, confiant dans l’habileté de ses compagnons, il leur ait quelquefois abandonné l’honneur et le soin de mettre l’œil à la lunette, ce fut une fructueuse paresse, qu’il ne faut pas regretter. L’ouvrage de Clairaut sur la forme de la terre vaut plus à lui seul que l’expédition tout entière. Ce chef-d’œuvre, digne de devenir classique, supérieur, comme l’a écrit d’Alembert, à tout ce qui avait été fait jusque-là sur cette matière, n’a pas été surpassé depuis. C’est peut-être, de tous les écrits mathématiques composés depuis deux siècles, celui qui, par la forme sévère et la profondeur ingénieuse des démonstrations, pourrait le mieux être comparé, égalé même, aux plus beaux chapitres du Livre des principes. Clairaut évidemment a lu et médité profondément l’œuvre admirable de Newton. Il s’est pénétré de sa méthode de recherche et de démonstration, et, de ce commerce intime avec un génie plus grand que le sien, mais de même famille, est sorti un géomètre tout nouveau. Les premiers travaux de Clairaut avaient donné de grandes espérances; le traité sur la figure de la terre les dépasse toutes, et de bien loin.
La collection des Mémoires de l’Académie des sciences pour 1742 contient un important mémoire de Clairaut sur quelques problèmes de mécanique. Les questions sur lesquelles il s’exerce sont les mêmes, pour la plupart, qui devaient se retrouver dans le traité de mécanique, composé alors, mais publié l’année suivante seulement par d’Alembert. La méthode suivie par Clairaut, moins générale et moins complète dans son énoncé que celle de d’Alembert, n’en diffère pas essentiellement dans l’application à chaque question; et l’on comprend, en lisant son mémoire, que mis en présence d’un même problème, les deux illustres géomètres aient pu l’aborder avec la même confiance et combattre à armes égales.
L’ouvrage de Clairaut sur la théorie de la lune et sur le problème des trois corps, présenté en 1747 à l’Académie des sciences de Paris, et couronné en 1750 par celle de Saint-Pétersbourg, offre, avec non moins d’art que la théorie de la forme de la terre, mais moins de pureté et de rigueur dans l’étude d’une question peut-être insoluble, une habileté et une élégance analytique qui montrent le talent de Clairaut sous un jour entièrement nouveau. Ce n’est plus le disciple de Newton, c’est le rival de d’Alembert.
Les premiers calculs de Clairaut indiquaient, pour le mouvement de l’apogée lunaire, une vitesse deux fois trop petite. Au lieu d’attribuer à l’imperfection de sa méthode ce désaccord avec les observations, également rencontré par d’Alembert et par Euler, Clairaut préféra accuser l’insuffisance de la loi d’attraction, et ébranlant lui-même tout son édifice, crut avoir contraint les géomètres à ajouter un terme nouveau au terme simple donné par Newton.
Le calcul dont Clairaut faisait son fort, n’étant pas poussé à bout, pouvait à peine motiver un doute. Buffon refusa avec raison de corrompre, par l’abandon si précipité du principe, la simplicité d’une théorie si grande et si belle. En étudiant d’ailleurs de nouveau la question avec autant de patience que de bonne foi, Clairaut, pour reconnaître son erreur, n’eut pas besoin de rectifier son calcul, mais de le continuer. L’inspiration de Buffon fut donc des plus heureuses; mais malgré toute la force que donne la vérité, il n’eut pas l’avantage dans la discussion, et en s’efforçant de fonder une loi mathématique sur un préjugé métaphysique, le grand écrivain ne retrouva ni son éloquence, ni sa clarté accoutumée. Il est bon peut-être de montrer, par quelques passages de son mémoire, jusqu’où peut aller l’égarement d’un homme de grand talent, lorsque, cherchant ses lumières en lui-même, il ose s’aventurer dans des régions qu’il ne connaît pas.
«L’attraction, dit-il, croyant alléguer un principe qu’il croit incontestable, doit se mesurer, comme toutes les qualités qui partent d’un centre, par la raison inverse du carré de la distance, comme on mesure en effet la quantité de lumière, l’odeur et toutes les autres qualités qui se propagent en ligne droite et se rapportent à un centre. Or il est bien évident que l’attraction se propage en ligne droite, parce qu’il n’y a rien de plus droit qu’un fil à plomb.»
La conclusion lui semble rigoureuse et indubitable, et Buffon lui trouve, pour sa part, la force et l’évidence d’une démonstration mathématique; «Mais, comme il est, dit-il, des gens rebelles aux analogies, Newton a cru qu’il valait mieux établir la loi de l’attraction par les phénomènes mêmes que par toute autre voie.» Non-seulement ces arguments ne sont ni clairs ni persuasifs, mais «placés, comme dit Montaigne, en dehors des limites et dernières clôtures de la science,» ils ne touchent pas même à la question. Clairaut répondit cependant, et cette discussion eut ce caractère singulier et sans exemple, que la vérité y fut défendue par des arguments qu’il a fallu citer textuellement pour en faire connaître l’insignificance et la faiblesse, tandis que celui des adversaires qui, en somme, se trompe, raisonne cependant avec autant de finesse que de rigueur.
Quoique loin de prétendre à la perfection théorique, Clairaut eût simplement présenté ses résultats comme des approximations successives, on lui reprocha d’avoir abandonné la rigueur traditionnelle des méthodes mathématiques. Fontaine était habitué à la rectitude inflexible du géomètre qui, ne souffrant rien d’imparfait, atteint, par une voie toujours droite, la vérité tout entière. En voyant cette marche timide, par laquelle de continuelles et croissantes approximations font tourner, pour ainsi dire, autour d’une difficulté qui reste invincible, et ces calculs qui, n’étant jamais achevés et ne pouvant jamais l’être, ne prétendent jamais non plus à la dernière perfection, il cria au paralogisme, presque à la trahison. Mais, non content de protester contre cette dérogation nécessaire à la sévère rigueur d’Euclide, il affirma que les principes de Clairaut, exactement et régulièrement suivis, assignaient à la lune une orbite circulaire. La question était facile à éclaircir, et l’erreur de Fontaine bien aisée à démontrer. Clairaut, sans abuser de son avantage, répondit avec autant de modération que de force. Un seul point, dit-il, l’a choqué dans les critiques de M. Fontaine et lui semble révoltant. Le mot n’est pas trop fort, car non content d’indiquer les calculs à faire, Clairaut les avait effectués; et contester ses résultats, presque tous conformes aux observations, c’était l’accuser tout ensemble d’erreur et d’imposture. Pressé par l’évidence de la vérité, Fontaine n’avait rien à répondre; il se tut en effet. Mais après la mort de Clairaut, il écrivit son éloge, dans lequel on lit les lignes suivantes:
«Newton n’a pu tout faire dans le Système du monde... sa Théorie de la lune n’était qu’ébauchée. M. Clairaut a tracé la ligne qu’elle doit suivre en obéissant à la triple action qui maîtrise son cours et qui la retient suspendue entre le soleil et la terre, il nous a montré dans des tables exactes tous les pas qu’elle fait dans les cieux.» Il est impossible, on le voit, de faire plus complétement amende honorable.
Vers la fin de l’année 1757, les savants commencèrent à se préoccuper du retour de la comète de 1682, hardiment annoncé, soixante-seize ans à l’avance, par l’astronome anglais Halley. L’orbite de cette comète, calculée par lui, se rapprochait assez en effet de celles des comètes de 1607 et de 1531 pour faire croire à l’identité des trois astres. Il y avait toutefois cette différence qu’il s’était écoulé plus de soixante-seize ans entre les deux premières apparitions, et un peu moins de soixante-quinze entre la seconde et la troisième. Mais Halley expliquait cette irrégularité par l’action des planètes rencontrées pendant ce long circuit. Il avait même ajouté que l’action de Jupiter devant vraisemblablement augmenter le temps de la révolution nouvelle, ses successeurs verraient sans doute l’astre errant vers la fin de 1758 ou le commencement de 1759. Une telle prédiction n’était pas sans précédent. Jacques Bernoulli en avait hasardé une plus précise encore, en annonçant le retour de la comète de 1680 pour le 17 juin 1705. Mais l’astre ne parut pas, et tous les astronomes de l’Europe restèrent en observation pendant la nuit entière et en furent pour leur peine.
Clairaut, acceptant l’hypothèse de Halley, voulut convertir en une appréciation exacte et précise les vagues indications de l’astronome anglais. L’exécution d’un tel projet devait être immédiate, et après l’événement accompli, ses résultats eussent semblé sans valeur. Abandonnant tout autre travail, il commença d’immenses calculs, dont le plus grand mérite est cependant l’art avec lequel il sut les abréger; car une heureuse avarice en pareille matière est, comme l’a dit Fontenelle, la meilleure marque de la richesse, et il faut bien connaître le pays pour suivre les petits sentiers qui épargnent tant de peine au voyageur.
Tout était terminé le 14 novembre 1758, et Clairaut annonçait à l’Académie que la comète, retardée de 100 jours par l’action de Saturne, et de 118 par celle de Jupiter, passerait au périhélie vers le 13 avril 1759.
«On sent, ajoutait-il, avec quel ménagement je présente une telle annonce, puisque tant de petites quantités, négligées nécessairement par les méthodes d’approximation pourraient bien en altérer le terme d’un mois.» Cette prédiction fut ponctuellement accomplie. La comète se montrant au temps préfix, passa au périhélie le 13 mars 1759. L’admiration fut universelle, mais elle ne fit pas taire l’envie, et l’applaudissement ne fut pas tout entier pour Clairaut. Ceux qui, n’ayant pas cru à l’exactitude de la prédiction, s’apprêtaient à rire de sa déconvenue, furent les plus ardents à rapporter à Halley tout l’honneur du succès. Qui osera prétendre après cela, dit spirituellement Clairaut, que l’apparition d’une comète soit sans influence sur l’esprit humain? Le Mercure du mois d’avril, en annonçant la grande nouvelle, parle, sans nommer Clairaut, de la prédiction heureusement accomplie de Halley. Dans une lettre adressée au journal encyclopédique de juillet, l’académicien Lemonnier qui, sur les glaces de la Tornéa, avait partagé les travaux de Clairaut, pousse encore plus loin le mauvais vouloir et l’injustice. Halley, suivant Lemonnier, a tout fait et doit seul être loué; ceux qui citent, dit-il, un mémoire lu à la rentrée publique de l’Académie en novembre 1758, n’ont jamais cité qu’un discours sans analyse, lequel n’a pas même été relu et examiné, selon l’usage, dans les séances particulières de l’Académie, et il ajoute, avec une intention blessante à la fois pour Clairaut et pour d’Alembert: «On ne doute pas que les méthodes d’approximation n’aient fait dans ces derniers temps un progrès considérable, ou du moins que dans un temps où M. Euler publie successivement tant de méthodes analytiques dont il est l’inventeur, on ne puisse produire aujourd’hui des calculs d’approximation plus satisfaisants que n’ont fait quelques astronomes anglais contemporains de Newton.» L’injustice et l’esprit de dénigrement se montrent avec tant d’évidence, que le public même ne dut pas s’y méprendre. Clairaut fut cependant profondément blessé et bien des ennuis se mêlèrent pour lui à la joie du triomphe. Une objection plus fondée fut adressée aux admirateurs trop exaltés de Clairaut. Les calculs sont tellement exacts, avait-on dit, que sur une période de soixante-seize ans, l’erreur est d’un mois à peine, c’est-à-dire 1/900 environ du tout. On répondait, et non sans raison, que l’inconnue à calculer n’était pas la durée de la révolution, et que la différence des deux périodes consécutives était seule en question. Cette appréciation, sans être injuste, tend à diminuer le mérite de Clairaut, et d’Alembert, qui lui prêta, en la développant, toute l’autorité de son nom, aurait mieux fait de laisser ce soin à d’autres.
Clairaut répondit à ses adversaires, à d’Alembert surtout, avec beaucoup de sincérité, de modération, de douceur même, et, pour tout dire enfin, avec la droiture d’un géomètre. Il tient à établir d’abord qu’il n’est pas l’agresseur: «Les fautes de procédé, dit-il, m’ont toujours en effet paru plus importantes que celles que l’on peut commettre dans les calculs.»
Clairaut mourut, le 17 mai 1765, à l’âge de cinquante-deux ans, après une courte maladie. Son père, qui lui survécut, avait perdu avant lui dix-neuf autres enfants; il lui restait une fille, à laquelle le roi accorda immédiatement une pension, en mémoire des services rendus à la science par son illustre frère.
Jean Lerond d’Alembert, né à Paris le 16 novembre 1717, fut exposé immédiatement après sa naissance sur les marches de l’église Saint-Jean-Lerond, située près de Notre-Dame. Le commissaire de police du quartier, touché de sa chétive apparence, n’osa pas l’envoyer aux enfants trouvés, et le confia à une pauvre et honnête vitrière par laquelle il fut bientôt adopté complétement. Sans se faire connaître, le père de d’Alembert lui assura une pension de 1,200 livres qui, en apportant un peu d’aisance dans la maison de sa mère d’adoption, permit de développer par l’éducation les rares facultés du pauvre enfant abandonné. Placé à l’âge de quatre ans dans une petite pension, il y resta jusqu’à douze; mais son maître, dès sa dixième année, déclarait n’avoir plus rien à lui apprendre et proposait de le faire entrer au collége dans la classe de seconde. La santé encore languissante du jeune écolier ne permit pas de suivre ce conseil, et ce fut deux ans après seulement qu’on le plaça au collége Mazarin, où sous la règle du plus austère jansénisme, il termina brillamment ses études.
La philosophie qu’on lui enseigna fut celle de Descartes: les idées innées, la prémotion physique et les tourbillons choquèrent son esprit rigoureux et précis sans y apporter aucune lumière. Les seules leçons fructueuses qu’il reçut, dit-il, pendant ses deux années de philosophie, furent celles de M. Caron, professeur de mathématiques qui, sans être profond géomètre, enseignait avec clarté et précision. Il ne fit que lui ouvrir la voie, d’Alembert la suivit seul. Cédant à son inclination naturelle, il allait, tout en faisant ses études de droit, s’instruire sommairement dans les bibliothèques des théories mathématiques les plus difficiles, dont il s’exerçait ensuite à retrouver les détails dans sa tête. Celui qui peut suivre une telle méthode est bien près de devenir inventeur: d’Alembert s’élançait en effet avec tant d’ardeur vers les régions encore inconnues que, devançant quelquefois ses livres, il croyait découvrir des vérités et des méthodes nouvelles, qu’il rencontrait ensuite, avec un dépit mêlé de plaisir, dans quelque auteur plus avancé.
Les amis de d’Alembert le détournaient des travaux mathématiques, qu’ils regardaient, non sans quelque raison, comme un mauvais moyen d’arriver à la fortune. Il se décida, suivant leurs sages conseils, à étudier la médecine, et bien résolu de s’y livrer tout entier, eut le courage de porter chez un ami tous ses livres de science, dont la séduction pourrait mettre obstacle à ses projets; mais son esprit heureusement était moins soumis que sa volonté: la géométrie le poursuivait au milieu de ses nouvelles études. Lorsqu’un problème venait à troubler son repos, d’Alembert, impatient de toute contrainte même volontaire, allait chercher un des volumes qui, peu à peu, et presque sans qu’il s’en fût aperçu, revinrent chez lui l’un après l’autre. Reconnaissant alors que la lutte était inutile et la maladie sans remède, il en prit joyeusement son parti; les travaux commencés timidement et comme à regret furent continués sans scrupule et avec ardeur. Rassemblant bientôt ses forces, inutilement dispersées jusque-là, d’Alembert composa deux mémoires de mathématiques qui, à l’âge de vingt-trois ans, lui ouvrirent les portes de l’Académie des sciences; il ne fut plus dès lors question de médecine.
Trois ans après son entrée à l’Académie, d’Alembert publiait le célèbre Traité de Mécanique dont le principe, entièrement nouveau, devait renouveler et changer la science du mouvement.
La Théorie de la précession des équinoxes, publiée en 1749, marque un nouveau progrès dans le talent de d’Alembert. Le phénomène de la précession des équinoxes, signalé par Hipparque, 130 ans avant notre ère, consiste dans le déplacement continu des points équinoxiaux où le plan de l’équateur rencontre celui de l’écliptique. L’un de ces plans au moins change donc avec le temps; la comparaison de chacun d’eux avec les étoiles montre avec évidence, dans le déplacement de l’équateur et par suite de l’axe terrestre, la cause du phénomène. La terre, Copernic a osé l’affirmer, ne tourne donc pas toujours autour du même axe; mais quelle peut être la cause de cette rotation si régulière et si lente, et la signification des vingt-six mille ans nécessaires pour en accomplir la perfection?
Cette recherche avait occupé et découragé l’imagination si hardie de Képler, et l’honneur d’en révéler le secret était réservé à Newton. La terre n’étant ni homogène ni parfaitement sphérique, les forces d’attraction de la lune et du soleil qui déterminent et troublent son mouvement elliptique ne passant pas rigoureusement par son centre, il en résulte qu’en la déplaçant dans l’espace, elles tendent en même temps à lui imprimer un mouvement de rotation qui, se combinant avec celui qu’elle possède déjà, altère incessamment la direction de l’axe autour duquel elle tourne. Pour calculer avec précision les lois d’un tel phénomène, il fallait créer la théorie du mouvement d’un corps solide sollicité par des forces connues; cette théorie manquait à Newton, et les considérations par lesquelles il tente d’y suppléer sont sans rigueur comme sans exactitude. D’Alembert vit dans ce nouveau problème une belle application de son principe de dynamique, et après avoir fait connaître la méthode exacte relative au cas général, en déduisit habilement non-seulement les lois de la précession, mais celles de la nutation, récemment révélées par les observations de Bradley.
En 1747, d’Alembert avait présenté à l’Académie des sciences de Paris un mémoire sur le problème des trois corps dont l’apparition marque pour la mécanique céleste le commencement d’une période nouvelle de découvertes et de progrès. La théorie de la gravitation, qui depuis la publication du livre des Principes n’avait subi aucun perfectionnement sérieux, était reprise pour la première fois après cinquante ans, à l’aide de méthodes nouvelles et plus puissantes. Par une coïncidence singulière, Clairaut, dans la même séance, présentait un mémoire sur le même sujet, dont Euler, alors à Berlin, s’occupait activement, sans en avoir toutefois rien communiqué au public.
En réalité, l’illustre auteur du livre des Principes n’avait fait, suivant d’Alembert, qu’ébaucher les premiers traits de la matière. Quelque lumière qu’il ait portée dans l’ordre de l’univers, il n’a pu manquer, ajoute-t-il, de sentir qu’il laisserait beaucoup à faire à ceux qui le suivraient, et c’est le sort des pensées des grands hommes d’être fécondes non-seulement dans leurs mains, mais dans celles des autres. L’analyse mathématique a heureusement acquis depuis Newton,—c’est toujours d’Alembert qui parle,—différents degrés d’accroissement; elle est devenue d’un usage plus étendu et plus commode, et nous met en état de perfectionner l’ouvrage commencé par ce grand philosophe. Il suffit à sa gloire que plus d’un demi-siècle se soit écoulé sans qu’on ait presque rien ajouté à sa théorie de la lune, et il y a peut-être plus loin du point d’où il est parti à celui où il est parvenu, que du point où il est resté à celui auquel nous pouvons maintenant atteindre.
D’Alembert, âgé de trente-deux ans et membre des Académies de Paris et de Berlin, ne s’était fait connaître que comme géomètre; il trouvait sous le toit de celle qui lui servait de mère toute la tranquillité nécessaire à ses profondes recherches. Le monde, je veux dire les sociétés brillantes dans lesquelles d’Alembert devait être bientôt recherché et admiré, était alors pour lui sans attrait; il ne le connaissait ni ne le désirait. Quelques amis dévoués, dont plusieurs devinrent illustres, formaient sa société habituelle, et le profond géomètre était cité comme le plus gai, le plus plaisant et le plus aimable de tous. L’un d’eux, Diderot, exerça sur d’Alembert une grande influence, et leurs noms, attachés à une œuvre célèbre et grandiose, sont pour bien des gens devenus inséparables. Le discours préliminaire de l’Encyclopédie, écrit en entier par d’Alembert, contient, dit-il, la quintessence des connaissances mathématiques, philosophiques et littéraires, acquises par vingt années d’études. Il fut reçu avec applaudissement et considéré comme une œuvre de premier ordre. L’admiration de Voltaire et de Montesquieu, les louanges sans restriction du roi Frédéric, celles enfin de Condorcet, ne permettent pas de traiter légèrement cette célèbre préface, aujourd’hui bien oubliée. La classification des connaissances humaines par laquelle il débute est cependant incomplète et arbitraire, et la manière plus ingénieuse que naturelle dont il croit les faire naître les unes des autres semble singulièrement choisie comme introduction à un dictionnaire, où l’ordre alphabétique seul règle la succession des articles.
D’Alembert, peu de temps après, fut nommé membre de l’Académie française. Vers la même époque, la réputation croissante du philosophe géomètre décida celle qui l’avait abandonné lors de sa naissance à réclamer les droits dont elle était devenue fière. Mme de Tencin lui fit savoir qu’elle était sa mère; mais d’Alembert, la repoussant à son tour, n’en voulut jamais reconnaître d’autre que la pauvre vitrière, dont il resta jusqu’au dernier jour le fils affectueux et dévoué.
Malgré ses occupations littéraires, d’Alembert ne cessa jamais d’accorder une grande place dans ses travaux à la haute géométrie. Également attiré par la recherche des vérités utiles et par le plaisir de vaincre les difficultés de la science, il publia, de 1761 à 1782, huit volumes d’opuscules mathématiques, contenant de nombreux mémoires relatifs aux sujets les plus élevés et les plus difficiles de la mécanique céleste, de l’analyse pure et de la physique. La division des forces de d’Alembert ne semble pas les avoir affaiblies, et ces écrits suffiraient pour placer l’auteur au nombre des grands géomètres. Il serait malaisé d’en faire ici le dénombrement. Parmi les questions traitées par d’Alembert, nous en citerons une seulement sur laquelle il est revenu à plusieurs reprises, après en avoir fait le sujet de l’une de ces lectures écoutées avec tant d’empressement par les gens du monde.
Malgré les travaux de Pascal, d’Huyghens et de Jacques Bernoulli, d’Alembert refuse d’accepter leurs principes sur la théorie des chances, et de voir dans le calcul des probabilités une branche légitime des mathématiques. Le problème qui fut le point de départ de ses doutes et l’occasion de ses critiques est resté célèbre dans l’histoire de la science sous le nom de «problème de Saint-Pétersbourg.» On suppose qu’un joueur, Pierre, jette une pièce en l’air autant de fois qu’il faut pour amener face. Le jeu s’arrête alors, et il paye à son adversaire, Paul, un franc s’il a suffi de jeter la pièce une fois, deux francs s’il a fallu la jeter deux fois, quatre francs s’il y a eu trois coups, puis huit francs, et ainsi de suite en doublant la somme chaque fois que l’arrivée de face est retardée d’un coup. On demande combien Paul doit payer équitablement en échange d’un tel engagement?
Le calcul fait par Daniel Bernoulli, qui avait proposé le problème, et conforme aux principes admis par tous les géomètres, à l’exception du seul d’Alembert, exige que l’enjeu de Paul soit infini. Quelque somme qu’il paye à Pierre avant de commencer le jeu, l’avantage sera de son côté; tel est dans ce cas le sens du mot infini. Ce résultat, quoique très-véritable, semble étrange et difficile à concilier avec les indications du bon sens, d’après lesquelles aucun homme raisonnable ne voudrait risquer à un tel jeu une somme un peu forte, 1,000 francs par exemple.
L’esprit de d’Alembert, embarrassé dans ce paradoxe, ne craignit pas de condamner les principes, indubitables pourtant, qui y conduisent, en proposant, pour en nier la rigueur et en contester l’évidence, les raisonnements les moins fondés et les plus singulières objections. Il refuse, par exemple, aux géomètres le droit d’assimiler dans leurs déductions cent épreuves faites successivement avec la même pièce à cent autres faites simultanément avec cent pièces différentes. «Les chances, dit-il, ne sont pas les mêmes dans les deux cas,» et la raison qu’il en donne est fondée sur un singulier sophisme: «Il est très-possible, dit-il, et même facile de produire le même événement en un seul coup autant de fois qu’on le voudra, et il est au contraire très-difficile de le produire en plusieurs coups successifs, et peut-être impossible, si le nombre des coups est très-grand.»—«Si j’ai, ajoute d’Alembert, deux cents pièces dans la main, et que je les jette en l’air à la fois, il est certain que l’un des coups croix ou pile se trouvera au moins cent fois dans les pièces jetées, au lieu que si l’on jetait une pièce successivement en l’air cent fois, on jouerait peut-être toute l’éternité avant de produire croix ou pile cent fois de suite.» Est-il nécessaire de faire remarquer que les deux cas assimilés sont entièrement distincts, et que jeter deux cents pièces en l’air pour choisir celles qui tournent la même face, c’est absolument comme si l’on jetait en l’air une pièce deux cents fois de suite, en choisissant après, pour les compter seules, les épreuves qui ont fourni le résultat désiré? Dans cette discussion, qui d’ailleurs n’occupe qu’une bien faible place parmi ses opuscules, d’Alembert se trompe complétement et sur tous les points. Son esprit, toujours prêt à s’arrêter, en déclarant impénétrable tout ce qui lui semble obscur, était plus qu’un autre exposé au péril de condamner légèrement les raisonnements si glissants et si fins du calcul des chances.
Quant au paradoxe du problème de Saint-Pétersbourg, il disparaît entièrement lorsqu’on interprète exactement le sens du résultat fourni par le calcul: une convention équitable n’est pas une convention indifférente pour les parties; cette distinction éclaircit tout. Un jeu peut être à la fois très-juste et très-déraisonnable pour les joueurs. Supposons, pour mettre cette vérité dans tout son jour, que l’on propose à mille personnes possédant chacune un million de former en commun un capital d’un milliard, qui sera abandonné à l’une d’elles désignée par le sort, toutes les autres restant ruinées. Le jeu sera équitable, et pourtant aucun homme sensé n’y voudra prendre part. En termes plus simples et plus évidents encore, le jeu, lors même qu’il n’est pas inique, devient imprudent et insensé pour le joueur dont la mise est trop considérable. Le problème de Saint-Pétersbourg offre, sous l’apparence d’un jeu très-modéré, dans lequel on doit vraisemblablement payer quelques francs seulement, des conventions qui peuvent, dans des cas qui n’ont rien d’impossible, forcer l’un des joueurs à payer une somme immense, et la répugnance instinctive qu’un homme de bon sens éprouve à admettre les conditions fournies par le calcul n’est autre chose au fond que la crainte très-fondée d’exposer à un jeu de hasard, même équitable, une somme de grande importance avec la presque certitude de la perdre.
Honnête homme et homme de bien, d’Alembert fut aimé et estimé de tous ceux qui l’ont connu. Ses contemporains ont exalté à l’envi sa bonté et sa générosité, toujours prête, sans ostentation de vertu. Admiré et vanté, jeune encore, par les juges les plus illustres, il n’excita l’envie de personne. Il s’exerça dans les genres les plus divers, et, sans avoir produit dans tous d’immortels chefs-d’œuvre, il fut placé par l’opinion au premier rang des savants, des littérateurs et des philosophes. Sans fortune, sans dignités, malgré le malheur de sa naissance et l’humble simplicité de sa vie, il fut grand entre ses contemporains par l’étendue de son influence. L’élévation de son caractère égala celle de son esprit. Dans son commerce familier et intime avec les plus grands personnages de son siècle, il sut conserver sans froideur toute la dignité de ses manières et obtenir sans l’exiger autant de déférence au moins qu’il en accordait; mais quoique sensible à la gloire et aux satisfactions de l’amour-propre, il ne cessa jamais, au milieu de ses succès, si nombreux et si constants, de chercher en vain le bonheur, qu’il n’entrevit qu’un instant; celui d’une affection profonde, dévouée, exclusive, et pour tout dire enfin, égale à celle dont il se sentait capable.
Les journalistes contemporains ont souvent affecté de placer Fontaine à côté et au-dessus de d’Alembert et de Clairaut. Il n’est pas responsable d’un tel rapprochement. Il était réellement inventif et habile, et quoiqu’il n’ait pas laissé de traces profondes dans la science, son passage y mérite au moins un souvenir. Les rares relations de Fontaine avec ses confrères montrent un caractère difficile et bizarre. Sa prétention d’étudier les vanités des hommes pour les blesser dans l’occasion aurait dû lui imposer pour lui-même une modestie qui lui manque trop souvent. «Lorsque j’entrai à l’Académie, dit-il dans un de ses mémoires, l’ouvrage que M. Jean Bernoulli avait envoyé en 1730, qui est un chef-d’œuvre, venait de paraître; cet ouvrage avait tourné l’esprit de tous les géomètres de ce côté-là, on ne parlait que du problème des tautochrones, j’en donnai la solution que voici, et on n’en parla plus.» Ce tour presque sublime et ces paroles plus grandes que le sujet pourraient faire sourire ceux mêmes qui ignorent l’histoire véritable du problème. La vérité est qu’on en a souvent parlé depuis sans mentionner la solution, exacte d’ailleurs, de Fontaine.
L’empressement de l’Académie à s’adjoindre Maupertuis semble révéler de puissantes protections.
On lit au procès-verbal du 7 décembre 1723: «M. de Maupertuis est entré et a présenté deux mémoires de lui sur des matières d’histoire naturelle.» Agé alors de vingt-trois ans, il s’adressait pour la première fois à l’Académie.
Huit jours après, M. de Maurepas fait savoir à l’Académie que M. de Camus s’étant montré inexact, sa place est déclarée vacante, et l’Académie, sans élever la moindre objection, y nomme Maupertuis. Le 27 décembre suivant, on lit au procès-verbal: «Le roi a autorisé M. de Beaufort, adjoint-géomètre, à prendre le titre d’adjoint-mécanicien, actuellement vacant, et M. de Maupertuis est nommé à la place d’adjoint-géomètre qui lui convient mieux.»
Ses seuls titres étaient alors deux mémoires inédits d’histoire naturelle dont le titre même nous est inconnu.
Maupertuis, académicien à vingt-quatre ans, sans avoir fait ses preuves en aucun genre, sembla d’abord prendre parti pour la géométrie, et ses premiers mémoires, sans rien apprendre aux géomètres habiles de l’époque, montrent la connaissance exacte des méthodes et des raisonnements mathématiques. Dès les premières années cependant, on voit apparaître le philosophe téméraire et superficiel prêt à trancher toutes les questions sans s’être préparé à en approfondir aucune. Interrompant ses études de géométrie pour des recherches que sa manière de raisonner lui rendait plus faciles, Maupertuis, sans donner ombre de preuves, propose une théorie générale des instruments de musique: les tables, qui dans chaque cas accompagnent le corps sonore sont, suivant lui, composées de fibres qui, semblables à des cordes isolées, peuvent vibrer inégalement et s’unir chacune à la note qui lui convient pour en accroître la résonnance.
C’est cette théorie dont le père Castel avait osé se moquer dans quelques lignes parfaitement justes, qui furent cependant trouvées insupportables. L’Académie, choquée, il est vrai, par les critiques adressées à tous les mémoires de l’année, préluda avec moins de retentissement et de rigueur mais autant d’injustice, aux inqualifiables sévérités exercées plus tard à Berlin contre un autre contradicteur de Maupertuis.
On raconte qu’un jour, mollement étendu dans un fauteuil, Maupertuis disait: «Je voudrais bien avoir à résoudre un beau problème qui ne serait pas difficile.» Cette parole le peint tout entier. Esprit agité sans consistance, remuant sans être actif, incapable de contention et d’effort, il a conservé pendant toute sa vie la science incomplète et superficielle qui lui valut ses premiers succès. Répandant son esprit en paroles et en conjectures, il se piqua de littérature et de philosophie; malgré leurs vastes prétentions, ses écrits, aussi pauvres par le fond que médiocres par le style, n’appartiennent plus dès lors à l’histoire de la science, et le bienveillant et timide Grandjean de Fouchy, en les mentionnant dans l’éloge de Maupertuis, décline avec raison sa compétence. Prompt à saisir la faveur des grands et à la ménager, Maupertuis fit de sa réputation scientifique l’instrument de sa fortune. Au milieu de l’applaudissement et de la faveur dont le succès de l’expédition du Nord l’avait entouré, Frédéric crut faire merveille en lui donnant, avec des avantages extraordinaires, la direction de l’Académie de Berlin. Il y brilla d’un éclat passager jusqu’au jour où l’impitoyable justice de Voltaire vint changer en un ridicule immortel le vain bruit qui avait entouré son nom.
Au nombre des géomètres de l’Académie, il serait injuste de ne pas citer Deparcieux qui, sans avoir pénétré les profondeurs de la science, a su joindre à un esprit juste une persistance infatigable dans l’étude des applications utiles.
C’est de lui que Voltaire a dit dans l’Homme aux quarante écus: «Mon géomètre était un citoyen philosophe...—Je lui dis: Monsieur, vous avez tâché d’éclairer les badauds de Paris sur le plus grand intérêt des hommes, la durée de la vie humaine. Le ministère a connu par vous seul ce qu’il doit donner aux rentiers viagers, selon leurs différents âges; vous avez proposé de donner aux maisons de la ville l’eau qui leur manque...»
Deparcieux, en effet, a publié des tables qui pendant longtemps furent les seules sur les probabilités de la vie humaine en France, et un projet très-minutieusement étudié pour amener à Paris les eaux de la rivière de l’Ivette.
Le début du livre de Deparcieux ne semble promettre que des calculs et des chiffres exacts, et les premières lignes sont écrites pour écarter quiconque n’est pas géomètre.
Soit B, dit-il sans autre exorde, l’intérêt que rapporte un certain fonds A; P, l’argent qu’on prête annuellement. . . . . . . . . . . . . . . . Ce début donnerait d’ailleurs une idée très-inexacte de la forme de l’ouvrage et de son esprit; certains passages pourraient au contraire mériter le reproche de s’éloigner un peu trop du sujet.
Deparcieux, par exemple, en blâmant moins éloquemment que Rousseau, mais vingt ans avant lui, l’habitude de confier les enfants à des nourrices étrangères, ne semble pas éloigné d’y voir la cause principale de toutes les enfances maladives en y rattachant, par une conséquence arbitraire, toutes les maladies et les incommodités à venir. «Telle personne, dit-il, qui, confiée dans son enfance à une nourrice étrangère, a vécu soixante-dix ou quatre-vingts ans, aurait vécu quatre-vingt-dix ou cent ans si elle avait teté tout le lait que la nature lui a destiné: aussi voit-on bien plus de gens âgés dans les provinces éloignées qu’aux environs de Paris.» Poursuivant sa thèse jusqu’aux conséquences les plus extrêmes, Deparcieux va jusqu’à désirer qu’une exacte police contraigne les mères à remplir «le premier et le plus cher de tous les devoirs.»
Le successeur le plus illustre de Clairaut et de d’Alembert dans l’Académie fut sans contredit Laplace. Marquant, dès ses débuts, la grandeur de ses vues et la hardiesse de son esprit, il rencontra pourtant fort peu d’encouragement et la place d’adjoint dans la section de géométrie, si aisément accordée autrefois à Maupertuis pour deux mémoires d’histoire naturelle, lui fut, nous l’avons dit, bien longtemps refusée. L’œuvre de Laplace comme géomètre est immense: il a touché aux questions les plus difficiles et saisi fortement, pour les soumettre à l’analyse, les phénomènes et les questions en apparence les plus rebelles. Le caractère de son talent n’est pas la perfection, et c’est par là qu’il est inférieur à Lagrange, mais il déploie souvent pour atteindre son but une puissance sans égale. Quand un problème est posé, il lui faut la solution, dût-il, comme le disait Poinsot, qui eût médité pendant vingt ans plutôt que d’accepter une telle extrémité, l’arracher avec ses ongles, ou même avec ses dents.
Lagrange, membre de l’Académie de Turin, fut appelé à Berlin pour y remplacer Euler. D’Alembert, qui l’avait désigné à Frédéric, ne cessait de le servir près de lui en égalant ses louanges à la vérité. «Je prends la liberté, écrivait-il, de demander à Votre Majesté ses bontés particulières pour cet homme véritablement rare et aussi estimable par ses sentiments que par son génie supérieur...
«Je ne crains pas d’affirmer que sa réputation déjà grande ira toujours croissant et que les sciences, Sire, vous auront une éternelle obligation de l’état aussi honorable qu’avantageux que vous voulez bien lui donner...
«Il nous effacera tous, ou du moins empêchera, qu’on nous regrette.»
Le génie droit et élevé de Lagrange, sans avoir produit ses plus beaux fruits, s’était révélé clairement, on le voit, à la généreuse perspicacité de d’Alembert. Quoique l’Académie des sciences de Paris ne l’ait appelé dans son sein qu’à la veille de la révolution, en 1786, elle a eu la bonne fortune de le faire Français pour toujours et de le léguer à l’Institut, où pendant plus de quinze ans il a siégé avec Laplace. Plus modeste, mais non moins profond que son illustre émule, il s’est élevé aussi haut d’un vol plus facile et plus ferme, et ses œuvres mathématiques, dont un siècle de progrès n’eût pas affaibli l’éclat, sont, aujourd’hui encore, offertes aux jeunes géomètres par un excellent juge, comme le guide le plus sûr en même temps que le modèle le plus accompli qu’ils puissent choisir à leur début dans la science et conserver avec grand profit, à quelque hauteur qu’ils s’y élèvent.
L’Académie comptait en même temps que Laplace, et avant de s’adjoindre Lagrange, deux géomètres fort illustres aussi, mais d’ordre moins élevé pourtant: Monge et Legendre.
Quoique fils d’un pauvre marchand ambulant, Monge fut élevé avec grand soin par les oratoriens de la ville de Beaune. Après de brillantes études, il fut chargé, à l’âge de vingt ans, d’un cours de physique et inspira à ses maîtres le désir de le garder avec eux. Mais, peu disposé à la carrière ecclésiastique, il entra à l’école du génie de Mézières, en sachant bien pourtant que son humble origine le condamnait pour toujours aux grades inférieurs à celui de lieutenant. C’est en étudiant les fortifications et la coupe des pierres qu’il conçut le premier l’idée des méthodes régulières et générales, aujourd’hui classiques, où tout l’art du trait est compris; mais, pour être rendues plus faciles et plus simples, ces pratiques, jusque-là secrètes, enseignées aux officiers du génie, n’en devaient être que plus soigneusement cachées, et c’est par des mémoires sur le calcul intégral que Monge se fit d’abord connaître de l’Académie, où il fut accueilli avec grande faveur.
C’est en 1783 seulement, à l’âge de trente-quatre ans, que Monge, appelé à Paris comme professeur d’une école fondée par Turgot, put devenir académicien. Les Mémoires de l’Académie contiennent de lui des travaux non moins importants que variés et son nom, placé entre ceux d’Euler et de Gauss, dans l’Histoire de la théorie générale des surfaces ne saurait être omis dans la liste des géomètres illustres, quelque courte qu’on veuille la faire. La théorie aujourd’hui classique et élémentaire en quelque sorte des lignes de courbure lui est due tout entière, et Lagrange, en regrettant de n’en pas être l’auteur, lui a décerné un éloge qui dispense de rien ajouter.
Legendre enfin, nommé membre adjoint de la section de géométrie en 1785, fut le dernier géomètre de grande réputation introduit dans l’ancienne Académie des sciences. Laborieux et sagace, il a eu le bonheur d’attacher son nom à la grande théorie des fonctions elliptiques. Créée par Euler et par Lagrange, perfectionnée depuis par les géomètres les plus illustres, c’est encore aujourd’hui le nom de Legendre dont son élude éveille tout d’abord le souvenir.
Les débuts de Legendre avaient attiré l’attention. Agé de dix-sept ans et élève encore du collége Mazarin, le seul où l’on enseignât les hautes mathématiques, il eut la hardiesse de dédier à l’Académie des sciences les thèses imprimées qu’il devait soutenir pour obtenir le grade de docteur. Les académiciens, acceptant l’hommage du jeune candidat, consentirent à diriger les épreuves dont l’ensemble mérita les louanges de d’Alembert. Sans proposer aucune méthode nouvelle, Legendre, dans ses thèses, trace le résumé rapide de ses études mathématiques dont elles montrent l’étendue et la force. La présence inaccoutumée de l’Académie ne contribua pas moins que la jeunesse du candidat à l’intérêt de ce brillant exercice d’écolier. Les gazettes en parlèrent et le professeur d’éloquence du collége, le sieur Cosson, célébra l’événement dans une longue et faible pièce de vers français. Legendre lui-même, comme pour se montrer capable de parler une autre langue que l’algèbre, adressa aux académiciens quelques phrases respectueuses et modestes, prononcées avec grâce et sans aucun trouble.
Excité et encouragé par ce premier succès, Legendre continua pendant trois ans ses études et ses recherches sans en publier les résultats. Son premier mémoire à l’Académie date de 1773. Nous nous rappelons tous, disent les commissaires, la thèse brillante que ce jeune géomètre a dédiée à l’Académie et les espérances qu’elle a conçues de ses talents. On verra avec plaisir que ces espérances se sont réalisées et qu’après avoir exposé avec autant d’ordre que de précision les découvertes des autres géomètres, M. Legendre est fait pour enrichir la géométrie de ses propres découvertes.
Lagrange, Laplace, Legendre et Monge, ont été connus de nos contemporains, et il m’a été donné plus d’une fois de les entendre juger par ceux dont ils avaient encouragé la jeunesse. M. Poinsot, dans quelques lignes finement travaillées, s’était plu à marquer les traits principaux de leur caractère et de leur talent, et, malgré l’injustice très-apparente envers l’un des plus illustres, il avait assez bien réussi pour que dès la première lecture on n’hésitât pas un instant sur le véritable nom des géomètres A, B, C, D.
A. Va d’un air simple à la vérité qu’il aime: la vérité lui sourit et quitte volontiers sa retraite pour se laisser produire au grand jour par un homme aussi modeste.
B. Ne l’a jamais vue que par surprise. Elle se cache à cet homme vain qui n’en parle que d’une manière obscure. Mais vous le voyez qui cherche à tourner cette obscurité en profondeur et son embarras en un air noble de contrainte et de peine comme un homme qui craint d’en trop dire et de divulguer un commerce secret qu’il n’a jamais eu avec elle.
C. Il faut bien, se dit-il, qu’elle soit en quelque lieu. Or il va laborieusement dans tous ceux où elle n’est point, et comme il n’en reste plus qu’un seul qu’il n’a pas visité, il dit qu’elle y est, qu’il en est bien sûr, et il s’essuie le front.
D. D’un tempérament chaud, la désire avec ardeur, la voit, la poursuit en satyre, l’atteint et la viole.